Source code for onnx_ir.passes.common.inliner

# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
"""Implementation of an inliner for onnx_ir."""

from __future__ import annotations

import dataclasses
import graphlib
from collections.abc import Callable

__all__ = ["InlinePass", "InlinePassResult"]

from collections import defaultdict
from collections.abc import Iterable, Mapping, Sequence

import onnx_ir as ir
from onnx_ir import _cloner

# A replacement for a node specifies a list of nodes that replaces the original node,
# and a list of values that replaces the original node's outputs.

NodeReplacement = tuple[Sequence[ir.Node], Sequence[ir.Value]]

# A call stack is a list of identifiers of call sites, where the first element is the
# outermost call site, and the last element is the innermost call site. This is used
# primarily for generating unique names for values in the inlined functions.
CallSiteId = str
CallStack = list[CallSiteId]


def _make_unique_name(name: str, callstack: CallStack, used_names: set[str]) -> str:  # pylint: disable=unused-argument
    """Generate a unique name from a name, calling-context, and set of used names.

    If there is a name clash, we add a numeric suffix to the name to make
    it unique. We use the same strategy to make node names unique.

    TODO: We can use the callstack in generating a name for a value X in a function
    that is inlined into a graph. This is not yet implemented. Using the full callstack
    leads to very long and hard to read names. Some investigation is needed to find
    a good naming strategy that will produce useful names for debugging.
    """
    candidate = name
    i = 1
    while candidate in used_names:
        i += 1
        candidate = f"{name}_{i}"
    used_names.add(candidate)
    return candidate


def _format_function_id(op_id: ir.OperatorIdentifier) -> str:
    """Format an operator identifier as a human-readable string."""
    domain, name, overload = op_id
    return f"{domain}::{name}" + (f":{overload}" if overload else "")


def _abbreviate(
    function_ids: Iterable[ir.OperatorIdentifier],
) -> dict[ir.OperatorIdentifier, str]:
    """Create a short unambiguous abbreviation for all function ids."""

    def id_abbreviation(id: ir.OperatorIdentifier) -> str:
        """Create a short unambiguous abbreviation for a function id."""
        domain, name, overload = id
        # Omit the domain, if it remains unambiguous after omitting it.
        if any(x[0] != domain and x[1] == name and x[2] == overload for x in function_ids):
            short_domain = domain + "_"
        else:
            short_domain = ""
        if overload != "":
            return short_domain + name + "_" + overload
        return short_domain + name

    return {id: id_abbreviation(id) for id in function_ids}


def _detect_function_cycles(model: ir.Model) -> list[ir.OperatorIdentifier] | None:
    """Detect cyclic dependencies between functions in the model.

    Returns:
        A list of function ids forming a cycle if a cycle is detected, otherwise None.
    """
    # Build dependency graph: function_id -> set of function_ids it calls
    dependencies: dict[ir.OperatorIdentifier, set[ir.OperatorIdentifier]] = {}

    for func_id, function in model.functions.items():
        for node in function.all_nodes():
            op_id = node.op_identifier()
            if op_id in model.functions:
                dependencies.setdefault(func_id, set()).add(op_id)

    sorter = graphlib.TopologicalSorter(dependencies)
    # Call prepare to detect cycles
    try:
        sorter.prepare()
    except graphlib.CycleError as e:
        cycle = e.args[1]
        return cycle
    return None


@dataclasses.dataclass
class InlinePassResult(ir.passes.PassResult):
    id_count: dict[ir.OperatorIdentifier, int]


[docs] class InlinePass(ir.passes.InPlacePass): """Inline model local functions to the main graph and functions and remove unused functions. When a node calls a function defined in the model and when ``criteria`` is None or ``criteria(function)`` returns True, the function body is inlined into the graph in place of the call node. .. versionadded:: 0.1.16 The ``criteria`` parameter. Requires: No cyclic dependencies between functions in the model. Attributes: criteria: Optional function that takes an :class:`onnx_ir.Function` and returns True if the it should be inlined. If None, all function calls are inlined. """ def __init__(self, criteria: Callable[[ir.Function], bool] | None = None) -> None: super().__init__() self.criteria = criteria # Internal states self._functions: dict[ir.OperatorIdentifier, ir.Function] = {} self._function_id_abbreviations: dict[ir.OperatorIdentifier, str] = {} self._opset_imports: dict[str, int] = {} self._used_value_names: set[str] = set() self._used_node_names: set[str] = set() self._node_context: dict[ir.Node, CallStack] = {} self._inlined_functions: set[ir.OperatorIdentifier] = set() def _reset(self, model: ir.Model) -> None: self._functions = model.functions self._function_id_abbreviations = _abbreviate(self._functions.keys()) self._opset_imports = model.opset_imports self._used_value_names = set() self._used_node_names = set() self._node_context = {} self._inlined_functions = set()
[docs] def requires(self, model: ir.Model) -> None: self._reset(model) # No cyclic dependencies allowed in functions cycle = _detect_function_cycles(model) if cycle is not None: cycle_str = " -> ".join(_format_function_id(func_id) for func_id in cycle) raise ir.passes.PreconditionError( f"Cyclic dependency detected between functions: {cycle_str}" )
def call(self, model: ir.Model) -> InlinePassResult: self._reset(model) id_count: dict[ir.OperatorIdentifier, int] = {} # Inline calls in the main graph main_id_count, total_inlined = self._inline_calls_in(model.graph) for k, v in main_id_count.items(): id_count[k] = id_count.get(k, 0) + v # Inline local functions left in the model because some functions may need to be # preserved due to the criteria. These functions may themselves contain calls to other # functions that can be inlined. for func_id, function in model.functions.items(): if func_id in self._inlined_functions: continue inner_id_count, inlined = self._inline_calls_in(function.graph) total_inlined += inlined for k, v in inner_id_count.items(): id_count[k] = id_count.get(k, 0) + v # Remove all of the inlined functions from the model for func_id in self._inlined_functions: del model.functions[func_id] return InlinePassResult(model, modified=bool(total_inlined), id_count=id_count) def _instantiate_call(self, node: ir.Node, call_site_id: CallSiteId) -> NodeReplacement: op_id = node.op_identifier() function = self._functions[op_id] # check opset compatibility and update the opset imports for key, value in function.opset_imports.items(): if key not in self._opset_imports: self._opset_imports[key] = value elif self._opset_imports[key] != value: raise ValueError( f"Opset mismatch when inlining function '{_format_function_id(op_id)}': " f"domain '{key}' has version {self._opset_imports[key]} in the model " f"but version {value} in the function" ) # Identify substitutions for both inputs and attributes of the function: attributes: Mapping[str, ir.Attr] = node.attributes default_attr_values = { attr.name: attr for attr in function.attributes.values() if attr.name not in attributes and attr.value is not None } if default_attr_values: attributes = {**attributes, **default_attr_values} if any( attr.type in {ir.AttributeType.GRAPH, ir.AttributeType.GRAPHS} for attr in attributes.values() ): raise ValueError( f"Inliner does not support graph attribute parameters to functions. " f"Function '{_format_function_id(op_id)}' has graph attributes" ) if len(node.inputs) > len(function.inputs): raise ValueError( f"Input mismatch when inlining function '{_format_function_id(op_id)}': " f"call site has {len(node.inputs)} inputs but function defines at most {len(function.inputs)} inputs" ) value_map = {} for i, input in enumerate(node.inputs): value_map[function.inputs[i]] = input for i in range(len(node.inputs), len(function.inputs)): value_map[function.inputs[i]] = None # Identify call-stack for node, used to generate unique names. call_stack = self._node_context.get(node, []) new_call_stack = [*call_stack, call_site_id] def rename(node: ir.Node) -> None: """Rename node/values in inlined node to ensure uniqueness in the inlined context.""" node_name = node.name or "node" node.name = _make_unique_name(node_name, new_call_stack, self._used_node_names) for output in node.outputs: if output is not None: output_name = output.name or "val" output.name = _make_unique_name( output_name, new_call_stack, self._used_value_names ) # Update context in case the new node is itself a call node that will be inlined. self._node_context[node] = new_call_stack cloner = _cloner.Cloner( attr_map=attributes, value_map=value_map, metadata_props=node.metadata_props, post_process=rename, resolve_ref_attrs=True, ) # iterate over the nodes in the function, creating a copy of each node # and replacing inputs with the corresponding values in the value map. # Update the value map with the new values. nodes = [cloner.clone_node(node) for node in function] output_values = [value_map[output] for output in function.outputs] return nodes, output_values # type: ignore[return-value] def _inline_calls_in( self, graph: ir.Graph ) -> tuple[dict[ir.OperatorIdentifier, int], int]: """Inline function calls in a graph. Returns: A tuple of (id_count, inlined_count) where: - id_count: A dict mapping function ids to the number of calls in the graph (used for naming disambiguation). - inlined_count: The number of nodes that were actually inlined. """ for input in graph.inputs: if input.name is not None: self._used_value_names.add(input.name) for initializer in graph.initializers: self._used_value_names.add(initializer) # Pre-processing: # * Count the number of times each function is called in the graph. # This is used for disambiguating names of values in the inlined functions. # * And identify names of values that are used in the graph. id_count: dict[ir.OperatorIdentifier, int] = defaultdict(int) for node in graph: if node.name: self._used_node_names.add(node.name) op_id = node.op_identifier() if op_id in self._functions: id_count[op_id] += 1 for output in node.outputs: if output.name is not None: self._used_value_names.add(output.name) next_id: dict[ir.OperatorIdentifier, int] = defaultdict(int) inlined_count = 0 for node in graph: op_id = node.op_identifier() if op_id in self._functions: if self.criteria is not None and not self.criteria(self._functions[op_id]): continue self._inlined_functions.add(op_id) # If there are multiple calls to same function, we use a prefix to disambiguate # the different call-sites: if id_count[op_id] > 1: call_site_prefix = f"_{next_id[op_id]}" next_id[op_id] += 1 else: call_site_prefix = "" call_site = node.name or ( self._function_id_abbreviations[op_id] + call_site_prefix ) nodes, values = self._instantiate_call(node, call_site) ir.convenience.replace_nodes_and_values( graph, insertion_point=node, old_nodes=[node], new_nodes=nodes, old_values=node.outputs, new_values=values, ) inlined_count += 1 else: for attr in node.attributes.values(): if attr.type == ir.AttributeType.GRAPH: _, sub_inlined = self._inline_calls_in(attr.as_graph()) inlined_count += sub_inlined elif attr.type == ir.AttributeType.GRAPHS: for g in attr.as_graphs(): _, sub_inlined = self._inline_calls_in(g) inlined_count += sub_inlined return id_count, inlined_count