.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_custom_model.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_custom_model.py: .. _l-custom-model: Write your own converter for your own model =========================================== It might happen that you implemented your own model and there is obviously no existing converter for this new model. That does not mean the conversion of a pipeline which includes it would not work. Let's see how to do it. `t-SNE `_ is an interesting transform which can only be used to study data as there is no way to reproduce the result once it was fitted. That's why the class `TSNE `_ does not have any method *transform*, only `fit_transform `_. This example proposes a way to train a machine learned model which approximates the outputs of a *t-SNE* transformer. Implementation of the new transform +++++++++++++++++++++++++++++++++++ The first section is about the implementation. The code is quite generic but basically follows this process to fit the model with *X* and *y*: * t-SNE, :math:`(X, y) \rightarrow X_2 \in \mathbb{R}^2` * k nearest neightbours, :math:`fit(X, X_2)`, which produces function :math:`f(X) \rightarrow X_3` * final normalization, simple scaling :math:`X_3 \rightarrow X_4` And to predict on a test set: * k nearest neightbours, :math:`f(X') \rightarrow X'_3` * final normalization, simple scaling :math:`X'_3 \rightarrow X'_4` .. GENERATED FROM PYTHON SOURCE LINES 43-213 .. code-block:: Python import inspect import os import numpy import onnx from onnx.tools.net_drawer import GetPydotGraph, GetOpNodeProducer import onnxruntime as rt from matplotlib import offsetbox import matplotlib.pyplot as plt import sklearn from sklearn.model_selection import train_test_split from sklearn import datasets from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.manifold import TSNE from sklearn.metrics import mean_squared_error from sklearn.neighbors import KNeighborsRegressor from skl2onnx import update_registered_converter import skl2onnx from skl2onnx import convert_sklearn, get_model_alias from skl2onnx.common._registration import get_shape_calculator from skl2onnx.common.data_types import FloatTensorType class PredictableTSNE(BaseEstimator, TransformerMixin): def __init__( self, transformer=None, estimator=None, normalize=True, keep_tsne_outputs=False, **kwargs ): """ :param transformer: `TSNE` by default :param estimator: `MLPRegressor` by default :param normalize: normalizes the outputs, centers and normalizes the output of the *t-SNE* and applies that same normalization to he prediction of the estimator :param keep_tsne_output: if True, keep raw outputs of *TSNE* is stored in member *tsne_outputs_* :param kwargs: sent to :meth:`set_params `, see its documentation to understand how to specify parameters """ TransformerMixin.__init__(self) BaseEstimator.__init__(self) if estimator is None: estimator = KNeighborsRegressor() if transformer is None: transformer = TSNE() self.estimator = estimator self.transformer = transformer self.keep_tsne_outputs = keep_tsne_outputs if not hasattr(transformer, "fit_transform"): raise AttributeError( "Transformer {} does not have a 'fit_transform' " "method.".format(type(transformer)) ) if not hasattr(estimator, "predict"): raise AttributeError( "Estimator {} does not have a 'predict' method.".format(type(estimator)) ) self.normalize = normalize if kwargs: self.set_params(**kwargs) def fit(self, X, y, sample_weight=None): """ Runs a *k-means* on each class then trains a classifier on the extended set of features. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples,n_features] Training data y : numpy array of shape [n_samples, n_targets] Target values. Will be cast to X's dtype if necessary sample_weight : numpy array of shape [n_samples] Individual weights for each sample Returns ------- self : returns an instance of self. Attributes ---------- transformer_: trained transformeer estimator_: trained regressor tsne_outputs_: t-SNE outputs if *keep_tsne_outputs* is True mean_: average of the *t-SNE* output on each dimension inv_std_: inverse of the standard deviation of the *t-SNE* output on each dimension loss_: loss (*mean_squared_error*) between the predictions and the outputs of t-SNE """ params = dict(y=y, sample_weight=sample_weight) self.transformer_ = clone(self.transformer) sig = inspect.signature(self.transformer.fit_transform) pars = {} for p in ["sample_weight", "y"]: if p in sig.parameters and p in params: pars[p] = params[p] target = self.transformer_.fit_transform(X, **pars) sig = inspect.signature(self.estimator.fit) if "sample_weight" in sig.parameters: self.estimator_ = clone(self.estimator).fit( X, target, sample_weight=sample_weight ) else: self.estimator_ = clone(self.estimator).fit(X, target) mean = target.mean(axis=0) var = target.std(axis=0) self.mean_ = mean self.inv_std_ = 1.0 / var exp = (target - mean) * self.inv_std_ got = (self.estimator_.predict(X) - mean) * self.inv_std_ self.loss_ = mean_squared_error(exp, got) if self.keep_tsne_outputs: self.tsne_outputs_ = exp if self.normalize else target return self def transform(self, X): """ Runs the predictions. Parameters ---------- X : numpy array or sparse matrix of shape [n_samples,n_features] Training data Returns ------- tranformed *X* """ pred = self.estimator_.predict(X) if self.normalize: pred -= self.mean_ pred *= self.inv_std_ return pred def get_params(self, deep=True): """ Returns the parameters for all the embedded objects. """ res = {} for k, v in self.transformer.get_params().items(): res["t_" + k] = v for k, v in self.estimator.get_params().items(): res["e_" + k] = v return res def set_params(self, **values): """ Sets the parameters before training. Every parameter prefixed by ``'e_'`` is an estimator parameter, every parameter prefixed by ``t_`` is for a transformer parameter. """ pt, pe, pn = {}, {}, {} for k, v in values.items(): if k.startswith("e_"): pe[k[2:]] = v elif k.startswith("t_"): pt[k[2:]] = v elif k.startswith("n_"): pn[k[2:]] = v else: raise ValueError("Unexpected parameter name '{0}'.".format(k)) self.transformer.set_params(**pt) self.estimator.set_params(**pe) .. GENERATED FROM PYTHON SOURCE LINES 214-218 Experimentation on MNIST ++++++++++++++++++++++++ Let's fit t-SNE... .. GENERATED FROM PYTHON SOURCE LINES 218-269 .. code-block:: Python digits = datasets.load_digits(n_class=6) Xd = digits.data yd = digits.target imgs = digits.images n_samples, n_features = Xd.shape n_samples, n_features X_train, X_test, y_train, y_test, imgs_train, imgs_test = train_test_split(Xd, yd, imgs) tsne = TSNE(n_components=2, init="pca", random_state=0) def plot_embedding(Xp, y, imgs, title=None, figsize=(12, 4)): x_min, x_max = numpy.min(Xp, 0), numpy.max(Xp, 0) X = (Xp - x_min) / (x_max - x_min) fig, ax = plt.subplots(1, 2, figsize=figsize) for i in range(X.shape[0]): ax[0].text( X[i, 0], X[i, 1], str(y[i]), color=plt.cm.Set1(y[i] / 10.0), fontdict={"weight": "bold", "size": 9}, ) if hasattr(offsetbox, "AnnotationBbox"): # only print thumbnails with matplotlib > 1.0 shown_images = numpy.array([[1.0, 1.0]]) # just something big for i in range(X.shape[0]): dist = numpy.sum((X[i] - shown_images) ** 2, 1) if numpy.min(dist) < 4e-3: # don't show points that are too close continue shown_images = numpy.r_[shown_images, [X[i]]] imagebox = offsetbox.AnnotationBbox( offsetbox.OffsetImage(imgs[i], cmap=plt.cm.gray_r), X[i] ) ax[0].add_artist(imagebox) ax[0].set_xticks([]), ax[0].set_yticks([]) ax[1].plot(Xp[:, 0], Xp[:, 1], ".") if title is not None: ax[0].set_title(title) return ax X_train_tsne = tsne.fit_transform(X_train) plot_embedding(X_train_tsne, y_train, imgs_train, "t-SNE embedding of the digits") .. image-sg:: /auto_examples/images/sphx_glr_plot_custom_model_001.png :alt: t-SNE embedding of the digits :srcset: /auto_examples/images/sphx_glr_plot_custom_model_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none array([, ], dtype=object) .. GENERATED FROM PYTHON SOURCE LINES 270-274 Repeatable t-SNE ++++++++++++++++ Just to check it is working. .. GENERATED FROM PYTHON SOURCE LINES 274-286 .. code-block:: Python ptsne_knn = PredictableTSNE() ptsne_knn.fit(X_train, y_train) X_train_tsne2 = ptsne_knn.transform(X_train) plot_embedding( X_train_tsne2, y_train, imgs_train, "Predictable t-SNE of the digits\n" "StandardScaler+KNeighborsRegressor", ) .. image-sg:: /auto_examples/images/sphx_glr_plot_custom_model_002.png :alt: Predictable t-SNE of the digits StandardScaler+KNeighborsRegressor :srcset: /auto_examples/images/sphx_glr_plot_custom_model_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none array([, ], dtype=object) .. GENERATED FROM PYTHON SOURCE LINES 287-288 We check on test set. .. GENERATED FROM PYTHON SOURCE LINES 288-298 .. code-block:: Python X_test_tsne2 = ptsne_knn.transform(X_test) plot_embedding( X_test_tsne2, y_test, imgs_test, "Predictable t-SNE of the digits\n" "StandardScaler+KNeighborsRegressor", ) .. image-sg:: /auto_examples/images/sphx_glr_plot_custom_model_003.png :alt: Predictable t-SNE of the digits StandardScaler+KNeighborsRegressor :srcset: /auto_examples/images/sphx_glr_plot_custom_model_003.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none array([, ], dtype=object) .. GENERATED FROM PYTHON SOURCE LINES 299-307 ONNX - shape_calculator, converter ++++++++++++++++++++++++++++++++++ Now starts the part dedicated to *ONNX*. *ONNX* conversion requires two function, one to calculate the shape of the outputs based on the inputs, the other one to do the actual conversion of the model. .. GENERATED FROM PYTHON SOURCE LINES 307-321 .. code-block:: Python def predictable_tsne_shape_calculator(operator): input = operator.inputs[0] # inputs in ONNX graph # output = operator.outputs[0] # output in ONNX graph op = operator.raw_operator # scikit-learn model (mmust be fitted) N = input.type.shape[0] # number of observations C = op.estimator_._y.shape[1] # dimension of outputs # new output definition operator.outputs[0].type = FloatTensorType([N, C]) .. GENERATED FROM PYTHON SOURCE LINES 322-324 Then the converter model. We reuse existing converter. .. GENERATED FROM PYTHON SOURCE LINES 324-376 .. code-block:: Python def predictable_tsne_converter(scope, operator, container): """ :param scope: name space, where to keep node names, get unused new names :param operator: operator to converter, same object as sent to *predictable_tsne_shape_calculator* :param container: contains the ONNX graph """ # input = operator.inputs[0] # input in ONNX graph output = operator.outputs[0] # output in ONNX graph op = operator.raw_operator # scikit-learn model (mmust be fitted) # First step is the k nearest-neighbours, # we reuse existing converter and declare it as local # operator. model = op.estimator_ alias = get_model_alias(type(model)) knn_op = scope.declare_local_operator(alias, model) knn_op.inputs = operator.inputs # We add an intermediate outputs. knn_output = scope.declare_local_variable("knn_output", FloatTensorType()) knn_op.outputs.append(knn_output) # We adjust the output of the submodel. shape_calc = get_shape_calculator(alias) shape_calc(knn_op) # We add the normalizer which needs a unique node name. name = scope.get_unique_operator_name("Scaler") # The parameter follows the specifications of ONNX # https://github.com/onnx/onnx/blob/main/docs/Operators-ml.md#ai.onnx.ml.Scaler attrs = dict( name=name, scale=op.inv_std_.ravel().astype(numpy.float32), offset=op.mean_.ravel().astype(numpy.float32), ) # Let's finally add the scaler which connects the output # of the k-nearest neighbours model to output of the whole model # declared in ONNX graph container.add_node( "Scaler", [knn_output.onnx_name], [output.full_name], op_domain="ai.onnx.ml", **attrs ) .. GENERATED FROM PYTHON SOURCE LINES 377-378 We now need to declare the new converter. .. GENERATED FROM PYTHON SOURCE LINES 378-387 .. code-block:: Python update_registered_converter( PredictableTSNE, "CustomPredictableTSNE", predictable_tsne_shape_calculator, predictable_tsne_converter, ) .. GENERATED FROM PYTHON SOURCE LINES 388-393 Conversion to ONNX ++++++++++++++++++ We just need to call *convert_sklearn* as any other model to convert. .. GENERATED FROM PYTHON SOURCE LINES 393-405 .. code-block:: Python model_onnx = convert_sklearn( ptsne_knn, "predictable_tsne", [("input", FloatTensorType([None, X_test.shape[1]]))], target_opset=12, ) # And save. with open("predictable_tsne.onnx", "wb") as f: f.write(model_onnx.SerializeToString()) .. GENERATED FROM PYTHON SOURCE LINES 406-407 We now compare the prediction. .. GENERATED FROM PYTHON SOURCE LINES 407-410 .. code-block:: Python print("ptsne_knn.tranform\n", ptsne_knn.transform(X_test[:2])) .. rst-class:: sphx-glr-script-out .. code-block:: none ptsne_knn.tranform [[-0.87237126 1.222756 ] [ 0.13582209 0.6264854 ]] .. GENERATED FROM PYTHON SOURCE LINES 411-412 Predictions with onnxruntime. .. GENERATED FROM PYTHON SOURCE LINES 412-418 .. code-block:: Python sess = rt.InferenceSession("predictable_tsne.onnx", providers=["CPUExecutionProvider"]) pred_onx = sess.run(None, {"input": X_test[:1].astype(numpy.float32)}) print("transform", pred_onx[0]) .. rst-class:: sphx-glr-script-out .. code-block:: none transform [[-0.8723713 1.222756 ]] .. GENERATED FROM PYTHON SOURCE LINES 419-422 The converter for the nearest neighbours produces an ONNX graph which does not allow multiple predictions at a time. Let's call *onnxruntime* for the second row. .. GENERATED FROM PYTHON SOURCE LINES 422-426 .. code-block:: Python pred_onx = sess.run(None, {"input": X_test[1:2].astype(numpy.float32)}) print("transform", pred_onx[0]) .. rst-class:: sphx-glr-script-out .. code-block:: none transform [[0.13582209 0.6264854 ]] .. GENERATED FROM PYTHON SOURCE LINES 427-429 Display the ONNX graph ++++++++++++++++++++++ .. GENERATED FROM PYTHON SOURCE LINES 429-447 .. code-block:: Python pydot_graph = GetPydotGraph( model_onnx.graph, name=model_onnx.graph.name, rankdir="TB", node_producer=GetOpNodeProducer( "docstring", color="yellow", fillcolor="yellow", style="filled" ), ) pydot_graph.write_dot("pipeline_tsne.dot") os.system("dot -O -Gdpi=300 -Tpng pipeline_tsne.dot") image = plt.imread("pipeline_tsne.dot.png") fig, ax = plt.subplots(figsize=(40, 20)) ax.imshow(image) ax.axis("off") .. image-sg:: /auto_examples/images/sphx_glr_plot_custom_model_004.png :alt: plot custom model :srcset: /auto_examples/images/sphx_glr_plot_custom_model_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none (-0.5, 2643.5, 9099.5, -0.5) .. GENERATED FROM PYTHON SOURCE LINES 448-449 **Versions used for this example** .. GENERATED FROM PYTHON SOURCE LINES 449-455 .. code-block:: Python print("numpy:", numpy.__version__) print("scikit-learn:", sklearn.__version__) print("onnx: ", onnx.__version__) print("onnxruntime: ", rt.__version__) print("skl2onnx: ", skl2onnx.__version__) .. rst-class:: sphx-glr-script-out .. code-block:: none numpy: 1.26.4 scikit-learn: 1.6.dev0 onnx: 1.17.0 onnxruntime: 1.18.0+cu118 skl2onnx: 1.17.0 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 10.217 seconds) .. _sphx_glr_download_auto_examples_plot_custom_model.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_custom_model.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_custom_model.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_