Source code for onnx_ir._tape

# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
"""Convenience methods for constructing the IR."""

from __future__ import annotations

from collections.abc import Mapping, Sequence
from typing import (
    Any,
    Optional,
)

import onnx_ir as ir
from onnx_ir import _convenience

# A type representing the domains/versions used in creating nodes in IR.
UsedOpsets = set[tuple[str, Optional[int]]]


class Tape:
    """Tape class.

    A tape is a recorder that collects nodes and initializers that are created so
    that they can be used for creating a graph.

    Example::

        >>> import onnx_ir as ir

        >>> tape = ir.tape.Tape()
        >>> a = tape.initializer(ir.tensor([1.0, 2.0, 3.0], name="a"))
        >>> b: ir.Value = ir.val("b", dtype=ir.DataType.FLOAT, shape=(3,))
        >>> c: ir.Value = ir.val("c", dtype=ir.DataType.FLOAT, shape=(3,))
        >>> x = tape.op("Add", [a, b])
        >>> y = tape.op("Elu", [x, c], attributes={"alpha": 2.0})
        >>> y.shape = ir.Shape((3,))
        >>> y.dtype = ir.DataType.FLOAT
        >>> model = ir.Model(
        ...     ir.Graph(
        ...         inputs=[b, c],
        ...         outputs=[y],
        ...         nodes=tape.nodes,
        ...         initializers=tape.initializers,
        ...         opset_imports={"": 20},
        ...         name="main_graph",
        ...     ),
        ...     ir_version=10,
        ... )
        >>> print(model)  # doctest: +NORMALIZE_WHITESPACE
        <
            ir_version=10,
            opset_imports={'': 20},
            producer_name=None,
            producer_version=None,
            domain=None,
            model_version=None,
        >
        graph(
            name=main_graph,
            inputs=(
                %"b"<FLOAT,[3]>,
                %"c"<FLOAT,[3]>
            ),
            outputs=(
                %"val_1"<FLOAT,[3]>
            ),
            initializers=(
                %"a"<FLOAT,[3]>{Tensor<FLOAT,[3]>(array([1., 2., 3.], dtype=float32), name='a')}
            ),
        ) {
            0 |  # node_Add_0
                 %"val_0"<?,?> ⬅️ ::Add(%"a"{[1.0, 2.0, 3.0]}, %"b")
            1 |  # node_Elu_1
                 %"val_1"<FLOAT,[3]> ⬅️ ::Elu(%"val_0", %"c") {alpha=2.0}
            return %"val_1"<FLOAT,[3]>
        }

    Attributes:
        graph_like: The graph to append the new nodes and initializers to. When
            it is None, the nodes and initializers are creating without owned by a graph.
            Initializers will not be added to functions because it is not supported by ONNX.
    """

    def __init__(self, graph_like: ir.Graph | ir.Function | None = None) -> None:
        self._nodes: list[ir.Node] = []
        self._initializers: list[ir.Value] = []
        self._used_opsets: UsedOpsets = set()
        self.graph_like = graph_like

    def __repr__(self) -> str:
        return f"Tape(nodes={self._nodes}, initializers={self._initializers})"

    @property
    def nodes(self) -> Sequence[ir.Node]:
        return tuple(self._nodes)

    @property
    def initializers(self) -> Sequence[ir.Value]:
        return tuple(self._initializers)

    @property
    def used_opsets(self) -> UsedOpsets:
        return self._used_opsets

[docs] def op( self, op_type: str, inputs: Sequence[ir.Value | None], attributes: Mapping[str, _convenience.SupportedAttrTypes] | None = None, *, domain: str = "", overload: str = "", version: int | None = None, graph: ir.Graph | None = None, name: str | None = None, doc_string: str | None = None, metadata_props: dict[str, str] | None = None, output: ir.Value | None = None, ) -> ir.Value: if attributes is None: attrs: Sequence[ir.Attr] = () else: attrs = _convenience.convert_attributes(attributes) output_kwargs: dict[str, Any] if output is None: output_kwargs = dict(num_outputs=1) else: output_kwargs = dict(outputs=[output]) node = ir.Node( domain, op_type, inputs, attributes=attrs, **output_kwargs, overload=overload, version=version, graph=graph or self.graph_like, name=name, doc_string=doc_string, metadata_props=metadata_props, ) self._nodes.append(node) self._used_opsets.add((domain, version)) return node.outputs[0]
[docs] def op_multi_out( self, op_type: str, inputs: Sequence[ir.Value | None], attributes: Mapping[str, _convenience.SupportedAttrTypes] | None = None, *, num_outputs: int | None = None, outputs: Sequence[ir.Value] | None = None, domain: str = "", overload: str = "", version: int | None = None, graph: ir.Graph | None = None, name: str | None = None, doc_string: str | None = None, metadata_props: dict[str, str] | None = None, ) -> Sequence[ir.Value]: if num_outputs is None and outputs is None: raise ValueError("Either num_outputs or outputs must be provided.") if num_outputs is not None and outputs is not None: raise ValueError("Both num_outputs and outputs cannot be provided simultaneously.") output_kwargs: dict[str, Any] if outputs is None: output_kwargs = dict(num_outputs=num_outputs) else: output_kwargs = dict(outputs=outputs) if attributes is None: attrs: Sequence[ir.Attr] = () else: attrs = _convenience.convert_attributes(attributes) node = ir.Node( domain, op_type, inputs, attributes=attrs, **output_kwargs, overload=overload, version=version, graph=graph or self.graph_like, name=name, doc_string=doc_string, metadata_props=metadata_props, ) self._nodes.append(node) self._used_opsets.add((domain, version)) return node.outputs
[docs] def initializer(self, tensor: ir.TensorProtocol, name: str | None = None) -> ir.Value: name = name or tensor.name if name is None: raise ValueError("Name must be provided for initializer.") shape = ir.Shape((d if isinstance(d, int) else d.value) for d in tensor.shape.dims) value = ir.Value( name=name, shape=shape, type=ir.TensorType(tensor.dtype), const_value=tensor ) self._initializers.append(value) if isinstance(self.graph_like, ir.Graph): self.graph_like.register_initializer(value) return value
class Builder(Tape): """An extension of the tape that provides a more convenient API for constructing the IR.""" def __getattr__(self, op_type: str) -> Any: return lambda *args, **kwargs: self._make_node(op_type, args, kwargs) def _make_node(self, op_type: str, inputs: Sequence[ir.Value], kwargs: dict[str, Any]): domain = kwargs.pop("_domain", "") version = kwargs.pop("_version", None) outputs = kwargs.pop("_outputs", 1) if isinstance(outputs, Sequence): num_outputs = len(outputs) else: assert isinstance(outputs, int) num_outputs = outputs if num_outputs == 1: value = super().op( op_type, inputs=inputs, attributes=kwargs, domain=domain, version=version ) if isinstance(outputs, Sequence): value.name = outputs[0] return value values = super().op_multi_out( op_type, inputs=inputs, attributes=kwargs, domain=domain, version=version, num_outputs=num_outputs, ) if isinstance(outputs, Sequence): for value, name in zip(values, outputs): value.name = name return values