Source code for onnx_ir.passes.common.output_fix

# Copyright (c) ONNX Project Contributors
# SPDX-License-Identifier: Apache-2.0
"""Output fix pass for adding Identity nodes.

- Graph inputs are directly used as outputs (without any intermediate nodes).
- A value is used multiple times as a graph output (ensuring each output is unique).

This ensures compliance with the ONNX specification for valid output configurations.
"""

from __future__ import annotations

__all__ = [
    "OutputFixPass",
]

import logging

import onnx_ir as ir

logger = logging.getLogger(__name__)


[docs] class OutputFixPass(ir.passes.InPlacePass): """Pass for adding Identity nodes to fix invalid output configurations. This pass adds Identity nodes according to the following rules: - If a graph input is directly used as a graph output (without any intermediate nodes), insert an Identity node between them. The ONNX specification does not allow a graph input to be directly used as a graph output without any processing nodes in between. - If a value is used multiple times as graph outputs, insert Identity nodes for each duplicate usage (keeping the first usage unchanged). This ensures each output value is unique, as required by the ONNX specification. This pass processes both the main graph and all subgraphs (e.g., in control flow operators). Example transformations: Direct input-to-output: Before: input -> (direct connection) -> output After: input -> Identity -> output Duplicate outputs: Before: value -> [output1, output2] After: value -> output1, value -> Identity -> output2 """ def call(self, model: ir.Model) -> ir.passes.PassResult: """Main entry point for the output fix pass.""" modified = False # Process the main graph if _alias_multi_used_outputs(model.graph): modified = True if _alias_direct_outputs(model.graph): modified = True # Process functions for function in model.functions.values(): if _alias_multi_used_outputs(function): modified = True if _alias_direct_outputs(function): modified = True return ir.passes.PassResult(model, modified=modified)
def _alias_multi_used_outputs(graph_like: ir.Graph | ir.Function) -> bool: """Insert Identity nodes for values that appear in the graph output list multiple times.""" modified = False for graph in (graph_like, *graph_like.subgraphs()): # Count usage of each output seen: set[ir.Value] = set() # Add Identity nodes for outputs used multiple times for i, output in enumerate(graph.outputs): if output not in seen: # Skip the first occurrence seen.add(output) continue # Create an Identity node identity_node = ir.node("Identity", inputs=[output]) identity_output = identity_node.outputs[0] # Copy metadata from the original output # TODO: Use a better unique naming strategy if needed identity_output.name = f"{output.name}_alias_{i}" identity_output.shape = output.shape identity_output.type = output.type identity_output.metadata_props.update(output.metadata_props) identity_output.doc_string = output.doc_string # Add the node to the graph graph.append(identity_node) graph.outputs[i] = identity_output logger.debug( "Added Identity node for graph output '%s' used multiple times", output ) modified = True return modified def _alias_direct_outputs(graph_like: ir.Graph | ir.Function) -> bool: """Insert Identity nodes for graph inputs used directly as outputs.""" modified = False for graph in (graph_like, *graph_like.subgraphs()): # Check each output to see if it's directly a graph input outputs_to_fix: list[tuple[ir.Value, int]] = [] for i, output in enumerate(graph.outputs): if output.is_graph_input(): outputs_to_fix.append((output, i)) # Add Identity nodes for each output that needs fixing for output, index in outputs_to_fix: # Create an Identity node identity_node = ir.node("Identity", inputs=[output]) identity_output = identity_node.outputs[0] # Copy metadata from the original output # Preserve the original output name identity_output.name = output.name identity_output.shape = output.shape identity_output.type = output.type identity_output.metadata_props.update(output.metadata_props) identity_output.doc_string = output.doc_string # Create a new name for the old output # TODO: Use a better unique naming strategy if needed output.name = f"{output.name}_orig" # Add the node to the graph graph.append(identity_node) graph.outputs[index] = identity_output logger.debug("Added Identity node for graph input '%s' used as output", output) modified = True return modified