(l-onnx-doc-ReverseSequence)= # ReverseSequence (l-onnx-op-reversesequence-10)= ## ReverseSequence - 10 ### Version - **name**: [ReverseSequence (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#ReverseSequence) - **domain**: `main` - **since_version**: `10` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 10**. ### Summary Reverse batch of sequences having different lengths specified by `sequence_lens`. For each slice i iterating on batch axis, the operator reverses the first sequence_lens[i] elements on time axis, and copies elements whose index's beyond sequence_lens[i] to the output. So the output slice i contains reversed sequences on the first sequence_lens[i] elements, then have original values copied for the other elements. Example 1: input = [[0.0, 4.0, 8.0, 12.0], [1.0, 5.0, 9.0, 13.0], [2.0, 6.0, 10.0, 14.0], [3.0, 7.0, 11.0, 15.0]] sequence_lens = [4, 3, 2, 1] time_axis = 0 batch_axis = 1 output = [[3.0, 6.0, 9.0, 12.0], [2.0, 5.0, 8.0, 13.0], [1.0, 4.0, 10.0, 14.0], [0.0, 7.0, 11.0, 15.0]] Example 2: input = [[0.0, 1.0, 2.0, 3.0 ], [4.0, 5.0, 6.0, 7.0 ], [8.0, 9.0, 10.0, 11.0], [12.0, 13.0, 14.0, 15.0]] sequence_lens = [1, 2, 3, 4] time_axis = 1 batch_axis = 0 output = [[0.0, 1.0, 2.0, 3.0 ], [5.0, 4.0, 6.0, 7.0 ], [10.0, 9.0, 8.0, 11.0], [15.0, 14.0, 13.0, 12.0]] ### Attributes * **batch_axis - INT** (default is `'1'`): (Optional) Specify which axis is batch axis. Must be one of 1 (default), or 0. * **time_axis - INT** (default is `'0'`): (Optional) Specify which axis is time axis. Must be one of 0 (default), or 1. ### Inputs - **input** (heterogeneous) - **T**: Tensor of rank r >= 2. - **sequence_lens** (heterogeneous) - **tensor(int64)**: Tensor specifying lengths of the sequences in a batch. It has shape `[batch_size]`. ### Outputs - **Y** (heterogeneous) - **T**: Tensor with same shape of input. ### Type Constraints * **T** in ( `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ): Input and output types can be of any tensor type.