(l-onnx-doc-ScatterND)=
# ScatterND
(l-onnx-op-scatternd-18)=
## ScatterND - 18
### Version
- **name**: [ScatterND (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#ScatterND)
- **domain**: `main`
- **since_version**: `18`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `True`
This version of the operator has been available
**since version 18**.
### Summary
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1,
and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation
is produced by creating a copy of the input `data`, and then updating its value to values
specified by `updates` at specific index positions specified by `indices`. Its output shape
is the same as the shape of `data`.
`indices` is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of `indices`.
`indices` is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into `data`.
Hence, k can be a value at most the rank of `data`. When k equals rank(data), each update entry specifies an
update to a single element of the tensor. When k is less than rank(data) each update entry specifies an
update to a slice of the tensor. Index values are allowed to be negative, as per the usual
convention for counting backwards from the end, but are expected in the valid range.
`updates` is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the
first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape.
The remaining dimensions of `updates` correspond to the dimensions of the
replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,
corresponding to the trailing (r-k) dimensions of `data`. Thus, the shape of `updates`
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation
of shapes.
The `output` is calculated via the following equation:
```
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
```
The order of iteration in the above loop is not specified.
In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
This ensures that the output value does not depend on the iteration order.
`reduction` allows specification of an optional reduction operation, which is applied to all values in `updates`
tensor into `output` at the specified `indices`.
In cases where `reduction` is set to "none", indices should not have duplicate entries: that is, if idx1 != idx2,
then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order.
When `reduction` is set to some reduction function `f`, `output` is calculated as follows:
```
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = f(output[indices[idx]], updates[idx])
```
where the `f` is `+`, `*`, `max` or `min` as specified.
This operator is the inverse of GatherND.
(Opset 18 change): Adds max/min to the set of allowed reduction ops.
Example 1:
```
data = [1, 2, 3, 4, 5, 6, 7, 8]
indices = [[4], [3], [1], [7]]
updates = [9, 10, 11, 12]
output = [1, 11, 3, 10, 9, 6, 7, 12]
```
Example 2:
```
data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
indices = [[0], [2]]
updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
```
### Attributes
* **reduction - STRING** (default is `'none'`):
Type of reduction to apply: none (default), add, mul, max, min. 'none': no reduction applied. 'add': reduction using the addition operation. 'mul': reduction using the addition operation. 'max': reduction using the maximum operation.'min': reduction using the minimum operation.
### Inputs
- **data** (heterogeneous) - **T**:
Tensor of rank r >= 1.
- **indices** (heterogeneous) - **tensor(int64)**:
Tensor of rank q >= 1.
- **updates** (heterogeneous) - **T**:
Tensor of rank q + r - indices_shape[-1] - 1.
### Outputs
- **output** (heterogeneous) - **T**:
Tensor of rank r >= 1.
### Type Constraints
* **T** in ( `tensor(bfloat16)`, `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ):
Constrain input and output types to any tensor type.
```{toctree}
text_diff_ScatterND_16_18
```
(l-onnx-op-scatternd-16)=
## ScatterND - 16
### Version
- **name**: [ScatterND (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#ScatterND)
- **domain**: `main`
- **since_version**: `16`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `True`
This version of the operator has been available
**since version 16**.
### Summary
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1,
and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation
is produced by creating a copy of the input `data`, and then updating its value to values
specified by `updates` at specific index positions specified by `indices`. Its output shape
is the same as the shape of `data`.
`indices` is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of `indices`.
`indices` is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into `data`.
Hence, k can be a value at most the rank of `data`. When k equals rank(data), each update entry specifies an
update to a single element of the tensor. When k is less than rank(data) each update entry specifies an
update to a slice of the tensor. Index values are allowed to be negative, as per the usual
convention for counting backwards from the end, but are expected in the valid range.
`updates` is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the
first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape.
The remaining dimensions of `updates` correspond to the dimensions of the
replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,
corresponding to the trailing (r-k) dimensions of `data`. Thus, the shape of `updates`
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation
of shapes.
The `output` is calculated via the following equation:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
The order of iteration in the above loop is not specified.
In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
This ensures that the output value does not depend on the iteration order.
`reduction` allows specification of an optional reduction operation, which is applied to all values in `updates`
tensor into `output` at the specified `indices`.
In cases where `reduction` is set to "none", indices should not have duplicate entries: that is, if idx1 != idx2,
then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order.
When `reduction` is set to "add", `output` is calculated as follows:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] += updates[idx]
When `reduction` is set to "mul", `output` is calculated as follows:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] *= updates[idx]
This operator is the inverse of GatherND.
Example 1:
```
data = [1, 2, 3, 4, 5, 6, 7, 8]
indices = [[4], [3], [1], [7]]
updates = [9, 10, 11, 12]
output = [1, 11, 3, 10, 9, 6, 7, 12]
```
Example 2:
```
data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
indices = [[0], [2]]
updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
```
### Attributes
* **reduction - STRING** (default is `'none'`):
Type of reduction to apply: none (default), add, mul. 'none': no reduction applied. 'add': reduction using the addition operation. 'mul': reduction using the multiplication operation.
### Inputs
- **data** (heterogeneous) - **T**:
Tensor of rank r >= 1.
- **indices** (heterogeneous) - **tensor(int64)**:
Tensor of rank q >= 1.
- **updates** (heterogeneous) - **T**:
Tensor of rank q + r - indices_shape[-1] - 1.
### Outputs
- **output** (heterogeneous) - **T**:
Tensor of rank r >= 1.
### Type Constraints
* **T** in ( `tensor(bfloat16)`, `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ):
Constrain input and output types to any tensor type.
```{toctree}
text_diff_ScatterND_13_18
text_diff_ScatterND_13_16
```
(l-onnx-op-scatternd-13)=
## ScatterND - 13
### Version
- **name**: [ScatterND (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#ScatterND)
- **domain**: `main`
- **since_version**: `13`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `True`
This version of the operator has been available
**since version 13**.
### Summary
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1,
and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation
is produced by creating a copy of the input `data`, and then updating its value to values
specified by `updates` at specific index positions specified by `indices`. Its output shape
is the same as the shape of `data`. Note that `indices` should not have duplicate entries.
That is, two or more `updates` for the same index-location is not supported.
`indices` is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of `indices`.
`indices` is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into `data`.
Hence, k can be a value at most the rank of `data`. When k equals rank(data), each update entry specifies an
update to a single element of the tensor. When k is less than rank(data) each update entry specifies an
update to a slice of the tensor. Index values are allowed to be negative, as per the usual
convention for counting backwards from the end, but are expected in the valid range.
`updates` is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the
first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape.
The remaining dimensions of `updates` correspond to the dimensions of the
replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,
corresponding to the trailing (r-k) dimensions of `data`. Thus, the shape of `updates`
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation
of shapes.
The `output` is calculated via the following equation:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
The order of iteration in the above loop is not specified.
In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
This ensures that the output value does not depend on the iteration order.
This operator is the inverse of GatherND.
Example 1:
```
data = [1, 2, 3, 4, 5, 6, 7, 8]
indices = [[4], [3], [1], [7]]
updates = [9, 10, 11, 12]
output = [1, 11, 3, 10, 9, 6, 7, 12]
```
Example 2:
```
data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
indices = [[0], [2]]
updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
```
### Inputs
- **data** (heterogeneous) - **T**:
Tensor of rank r >= 1.
- **indices** (heterogeneous) - **tensor(int64)**:
Tensor of rank q >= 1.
- **updates** (heterogeneous) - **T**:
Tensor of rank q + r - indices_shape[-1] - 1.
### Outputs
- **output** (heterogeneous) - **T**:
Tensor of rank r >= 1.
### Type Constraints
* **T** in ( `tensor(bfloat16)`, `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ):
Constrain input and output types to any tensor type.
```{toctree}
text_diff_ScatterND_11_18
text_diff_ScatterND_11_16
text_diff_ScatterND_11_13
```
(l-onnx-op-scatternd-11)=
## ScatterND - 11
### Version
- **name**: [ScatterND (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#ScatterND)
- **domain**: `main`
- **since_version**: `11`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `True`
This version of the operator has been available
**since version 11**.
### Summary
ScatterND takes three inputs `data` tensor of rank r >= 1, `indices` tensor of rank q >= 1,
and `updates` tensor of rank q + r - indices.shape[-1] - 1. The output of the operation
is produced by creating a copy of the input `data`, and then updating its value to values
specified by `updates` at specific index positions specified by `indices`. Its output shape
is the same as the shape of `data`. Note that `indices` should not have duplicate entries.
That is, two or more `updates` for the same index-location is not supported.
`indices` is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of `indices`.
`indices` is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into `data`.
Hence, k can be a value at most the rank of `data`. When k equals rank(data), each update entry specifies an
update to a single element of the tensor. When k is less than rank(data) each update entry specifies an
update to a slice of the tensor. Index values are allowed to be negative, as per the usual
convention for counting backwards from the end, but are expected in the valid range.
`updates` is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the
first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape.
The remaining dimensions of `updates` correspond to the dimensions of the
replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor,
corresponding to the trailing (r-k) dimensions of `data`. Thus, the shape of `updates`
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation
of shapes.
The `output` is calculated via the following equation:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
The order of iteration in the above loop is not specified.
In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2].
This ensures that the output value does not depend on the iteration order.
This operator is the inverse of GatherND.
Example 1:
```
data = [1, 2, 3, 4, 5, 6, 7, 8]
indices = [[4], [3], [1], [7]]
updates = [9, 10, 11, 12]
output = [1, 11, 3, 10, 9, 6, 7, 12]
```
Example 2:
```
data = [[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
indices = [[0], [2]]
updates = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]]]
output = [[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[1, 2, 3, 4], [5, 6, 7, 8], [8, 7, 6, 5], [4, 3, 2, 1]],
[[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3], [4, 4, 4, 4]],
[[8, 7, 6, 5], [4, 3, 2, 1], [1, 2, 3, 4], [5, 6, 7, 8]]]
```
### Inputs
- **data** (heterogeneous) - **T**:
Tensor of rank r >= 1.
- **indices** (heterogeneous) - **tensor(int64)**:
Tensor of rank q >= 1.
- **updates** (heterogeneous) - **T**:
Tensor of rank q + r - indices_shape[-1] - 1.
### Outputs
- **output** (heterogeneous) - **T**:
Tensor of rank r >= 1.
### Type Constraints
* **T** in ( `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ):
Constrain input and output types to any tensor type.