(l-onnx-doc-Slice)= # Slice (l-onnx-op-slice-13)= ## Slice - 13 ### Version - **name**: [Slice (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Slice) - **domain**: `main` - **since_version**: `13` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 13**. ### Summary Produces a slice of the input tensor along multiple axes. Similar to numpy: https://numpy.org/doc/stable/user/basics.indexing.html?highlight=slice#slicing-and-striding Slice uses the `starts`, `ends`, `axes` and `steps` inputs to select a sub-tensor of its input `data` tensor. An effective `starts[i]`, `ends[i]`, and `steps[i]` must be computed for each `i` in `[0, ... r-1]` where `r = rank(input)` as follows: If `axes` are omitted, they are set to `[0, ..., r-1]`. If `steps` are omitted, they are set to `[1, ..., 1]` of length `len(starts)` The effective values are initialized as `start[i] = 0`, `ends[i] = dims[i]` where `dims` are the dimensions of `input` and `steps[i] = 1`. All negative elements of `axes` are made non-negative by adding `r` to them, where `r =rank(input)`. All negative values in `starts[i]` and `ends[i]` have `dims[axes[i]]` added to them, where `dims` are the dimensions of `input`. Then `start[axes[i]]` is the adjusted `starts[i]` is clamped into the range `[0, dims[axes[i]]]` for positive stepping and `[0, dims[axes[i]]-1]` for negative stepping. The clamping for the adjusted `ends[i]` depends on the sign of `steps[i]` and must accommodate copying 0 through `dims[axes[i]]` elements, so for positive stepping `ends[axes[i]]` is clamped to `[0, dims[axes[i]]]`, while for negative stepping it is clamped to `[-1, dims[axes[i]]-1]`. Finally, `steps[axes[i]] = steps[i]`. For slicing to the end of a dimension with unknown size, it is recommended to pass in `INT_MAX` when slicing forward and 'INT_MIN' when slicing backward. Example 1: ``` data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] steps = [1, 2] result = [ [5, 7], ] ``` Example 2: ``` data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] starts = [0, 1] ends = [-1, 1000] result = [ [2, 3, 4], ] ``` ### Inputs Between 3 and 5 inputs. - **data** (heterogeneous) - **T**: Tensor of data to extract slices from. - **starts** (heterogeneous) - **Tind**: 1-D tensor of starting indices of corresponding axis in `axes` - **ends** (heterogeneous) - **Tind**: 1-D tensor of ending indices (exclusive) of corresponding axis in `axes` - **axes** (optional, heterogeneous) - **Tind**: 1-D tensor of axes that `starts` and `ends` apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an axis is repeated. - **steps** (optional, heterogeneous) - **Tind**: 1-D tensor of slice step of corresponding axis in `axes`. Negative value means slicing backward. 'steps' cannot be 0. Defaults to 1s. ### Outputs - **output** (heterogeneous) - **T**: Sliced data tensor. ### Type Constraints * **T** in ( `tensor(bfloat16)`, `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ): Constrain input and output types to all tensor types. * **Tind** in ( `tensor(int32)`, `tensor(int64)` ): Constrain indices to integer types ```{toctree} text_diff_Slice_11_13 ``` (l-onnx-op-slice-11)= ## Slice - 11 ### Version - **name**: [Slice (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Slice) - **domain**: `main` - **since_version**: `11` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 11**. ### Summary Produces a slice of the input tensor along multiple axes. Similar to numpy: https://numpy.org/doc/stable/reference/routines.indexing.html Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end dimension and step for each axis in the list of axes, it uses this information to slice the input `data` tensor. If a negative value is passed for any of the start or end indices, it represents number of elements before the end of that dimension. If the value passed to start or end is larger than the `n` (the number of elements in this dimension), it represents `n`. For slicing to the end of a dimension with unknown size, it is recommended to pass in `INT_MAX` when slicing forward and 'INT_MIN' when slicing backward. If a negative value is passed for step, it represents slicing backward. However step value cannot be 0. If `axes` are omitted, they are set to `[0, ..., ndim-1]`. If `steps` are omitted, they are set to `[1, ..., 1]` of length `len(starts)` Example 1: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] steps = [1, 2] result = [ [5, 7], ] Example 2: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] starts = [0, 1] ends = [-1, 1000] result = [ [2, 3, 4], ] ### Inputs Between 3 and 5 inputs. - **data** (heterogeneous) - **T**: Tensor of data to extract slices from. - **starts** (heterogeneous) - **Tind**: 1-D tensor of starting indices of corresponding axis in `axes` - **ends** (heterogeneous) - **Tind**: 1-D tensor of ending indices (exclusive) of corresponding axis in `axes` - **axes** (optional, heterogeneous) - **Tind**: 1-D tensor of axes that `starts` and `ends` apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). - **steps** (optional, heterogeneous) - **Tind**: 1-D tensor of slice step of corresponding axis in `axes`. Negative value means slicing backward. 'steps' cannot be 0. Defaults to 1. ### Outputs - **output** (heterogeneous) - **T**: Sliced data tensor. ### Type Constraints * **T** in ( `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ): Constrain input and output types to all tensor types. * **Tind** in ( `tensor(int32)`, `tensor(int64)` ): Constrain indices to integer types ```{toctree} text_diff_Slice_10_13 text_diff_Slice_10_11 ``` (l-onnx-op-slice-10)= ## Slice - 10 ### Version - **name**: [Slice (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Slice) - **domain**: `main` - **since_version**: `10` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 10**. ### Summary Produces a slice of the input tensor along multiple axes. Similar to numpy: https://numpy.org/doc/stable/reference/routines.indexing.html Slices uses `starts`, `ends`, `axes` and `steps` inputs to specify the start and end dimension and step for each axis in the list of axes, it uses this information to slice the input `data` tensor. If a negative value is passed for any of the start or end indices, it represent number of elements before the end of that dimension. If the value passed to start or end is larger than the `n` (the number of elements in this dimension), it represents `n`. For slicing to the end of a dimension with unknown size, it is recommended to pass in `INT_MAX`. If a negative value is passed for step, it represents slicing backward. If `axes` are omitted, they are set to `[0, ..., ndim-1]`. If `steps` are omitted, they are set to `[1, ..., 1]` of length `len(starts)` Example 1: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] steps = [1, 2] result = [ [5, 7], ] Example 2: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] starts = [0, 1] ends = [-1, 1000] result = [ [2, 3, 4], ] ### Inputs Between 3 and 5 inputs. - **data** (heterogeneous) - **T**: Tensor of data to extract slices from. - **starts** (heterogeneous) - **Tind**: 1-D tensor of starting indices of corresponding axis in `axes` - **ends** (heterogeneous) - **Tind**: 1-D tensor of ending indices (exclusive) of corresponding axis in `axes` - **axes** (optional, heterogeneous) - **Tind**: 1-D tensor of axes that `starts` and `ends` apply to. - **steps** (optional, heterogeneous) - **Tind**: 1-D tensor of slice step of corresponding axis in `axes`. Default to 1. ### Outputs - **output** (heterogeneous) - **T**: Sliced data tensor. ### Type Constraints * **T** in ( `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ): Constrain input and output types to all tensor types. * **Tind** in ( `tensor(int32)`, `tensor(int64)` ): Constrain indices to integer types ```{toctree} text_diff_Slice_1_13 text_diff_Slice_1_11 text_diff_Slice_1_10 ``` (l-onnx-op-slice-1)= ## Slice - 1 ### Version - **name**: [Slice (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Slice) - **domain**: `main` - **since_version**: `1` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 1**. ### Summary Produces a slice of the input tensor along multiple axes. Similar to numpy: https://numpy.org/doc/stable/reference/routines.indexing.html Slices uses `axes`, `starts` and `ends` attributes to specify the start and end dimension for each axis in the list of axes, it uses this information to slice the input `data` tensor. If a negative value is passed for any of the start or end indices, it represent number of elements before the end of that dimension. If the value passed to start or end is larger than the `n` (the number of elements in this dimension), it represents `n`. For slicing to the end of a dimension with unknown size, it is recommended to pass in `INT_MAX`. If `axes` are omitted, they are set to `[0, ..., ndim-1]`. Example 1: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] axes = [0, 1] starts = [1, 0] ends = [2, 3] result = [ [5, 6, 7], ] Example 2: data = [ [1, 2, 3, 4], [5, 6, 7, 8], ] starts = [0, 1] ends = [-1, 1000] result = [ [2, 3, 4], ] ### Attributes * **axes - INTS** : Axes that `starts` and `ends` apply to. It's optional. If not present, will be treated as [0, 1, ..., len(`starts`) - 1]. * **ends - INTS** (required) : Ending indices (exclusive) of corresponding axis in axes` * **starts - INTS** (required) : Starting indices of corresponding axis in `axes` ### Inputs - **data** (heterogeneous) - **T**: Tensor of data to extract slices from. ### Outputs - **output** (heterogeneous) - **T**: Sliced data tensor. ### Type Constraints * **T** in ( `tensor(bool)`, `tensor(complex128)`, `tensor(complex64)`, `tensor(double)`, `tensor(float)`, `tensor(float16)`, `tensor(int16)`, `tensor(int32)`, `tensor(int64)`, `tensor(int8)`, `tensor(string)`, `tensor(uint16)`, `tensor(uint32)`, `tensor(uint64)`, `tensor(uint8)` ): Constrain input and output types to all tensor types.