(l-onnx-doc-Sum)= # Sum (l-onnx-op-sum-13)= ## Sum - 13 ### Version - **name**: [Sum (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sum) - **domain**: `main` - **since_version**: `13` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 13**. ### Summary Element-wise sum of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check [Broadcasting in ONNX](https://github.com/onnx/onnx/blob/main/docs/Broadcasting.md). ### Inputs Between 1 and 2147483647 inputs. - **data_0** (variadic, heterogeneous) - **T**: List of tensors for sum. ### Outputs - **sum** (heterogeneous) - **T**: Output tensor. ### Type Constraints * **T** in ( `tensor(bfloat16)`, `tensor(double)`, `tensor(float)`, `tensor(float16)` ): Constrain input and output types to float tensors. ```{toctree} text_diff_Sum_8_13 ``` (l-onnx-op-sum-8)= ## Sum - 8 ### Version - **name**: [Sum (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sum) - **domain**: `main` - **since_version**: `8` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 8**. ### Summary Element-wise sum of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports **multidirectional (i.e., Numpy-style) broadcasting**; for more details please check [Broadcasting in ONNX](https://github.com/onnx/onnx/blob/main/docs/Broadcasting.md). ### Inputs Between 1 and 2147483647 inputs. - **data_0** (variadic, heterogeneous) - **T**: List of tensors for sum. ### Outputs - **sum** (heterogeneous) - **T**: Output tensor. ### Type Constraints * **T** in ( `tensor(double)`, `tensor(float)`, `tensor(float16)` ): Constrain input and output types to float tensors. ```{toctree} text_diff_Sum_6_13 text_diff_Sum_6_8 ``` (l-onnx-op-sum-6)= ## Sum - 6 ### Version - **name**: [Sum (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sum) - **domain**: `main` - **since_version**: `6` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 6**. ### Summary Element-wise sum of each of the input tensors. All inputs and outputs must have the same shape and data type. ### Inputs Between 1 and 2147483647 inputs. - **data_0** (variadic, heterogeneous) - **T**: List of tensors for Sum. ### Outputs - **sum** (heterogeneous) - **T**: Output tensor. Same dimension as inputs. ### Type Constraints * **T** in ( `tensor(double)`, `tensor(float)`, `tensor(float16)` ): Constrain input and output types to float tensors. ```{toctree} text_diff_Sum_1_13 text_diff_Sum_1_8 text_diff_Sum_1_6 ``` (l-onnx-op-sum-1)= ## Sum - 1 ### Version - **name**: [Sum (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Sum) - **domain**: `main` - **since_version**: `1` - **function**: `False` - **support_level**: `SupportType.COMMON` - **shape inference**: `False` This version of the operator has been available **since version 1**. ### Summary Element-wise sum of each of the input tensors. All inputs and outputs must have the same shape and data type. ### Attributes * **consumed_inputs - INTS** : legacy optimization attribute. ### Inputs Between 1 and 2147483647 inputs. - **data_0** (variadic, heterogeneous) - **T**: List of tensors for Sum. ### Outputs - **sum** (heterogeneous) - **T**: Output tensor. Same dimension as inputs. ### Type Constraints * **T** in ( `tensor(double)`, `tensor(float)`, `tensor(float16)` ): Constrain input and output types to float tensors.