(l-onnx-doc-Swish)= # Swish (l-onnx-op-swish-24)= ## Swish - 24 ### Version - **name**: [Swish (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators.md#Swish) - **domain**: `main` - **since_version**: `24` - **function**: `True` - **support_level**: `SupportType.COMMON` - **shape inference**: `True` This version of the operator has been available **since version 24**. ### Summary Swish function takes one input data (Tensor) and produces one output data (Tensor) of the same shape, where $Swish(x) = x * sigmoid(alpha * x)$. #### Function Body The function definition for this operator. ``` < domain: "", opset_import: ["" : 24] > Swish (X) => (Y) { Alpha = Constant () AlphaCast = CastLike (Alpha, X) AlphaMulX = Mul (AlphaCast, X) SigmoidAlphaMulX = Sigmoid (AlphaMulX) Y = Mul (X, SigmoidAlphaMulX) } ``` ### Attributes * **alpha - FLOAT** (default is `'1.0'`): Coefficient to multiply with input before sigmoid. ### Inputs - **X** (heterogeneous) - **T**: Input tensor ### Outputs - **Y** (heterogeneous) - **T**: Output tensor ### Type Constraints * **T** in ( `tensor(bfloat16)`, `tensor(double)`, `tensor(float)`, `tensor(float16)` ): Constrain input and output types to float tensors.