(l-onnx-docai-onnx-ml-LinearRegressor)=
# ai.onnx.ml - LinearRegressor
(l-onnx-opai-onnx-ml-linearregressor-1)=
## LinearRegressor - 1 (ai.onnx.ml)
### Version
- **name**: [LinearRegressor (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators-ml.md#ai.onnx.ml.LinearRegressor)
- **domain**: `ai.onnx.ml`
- **since_version**: `1`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `False`
This version of the operator has been available
**since version 1 of domain ai.onnx.ml**.
### Summary
Generalized linear regression evaluation.
If targets is set to 1 (default) then univariate regression is performed.
If targets is set to M then M sets of coefficients must be passed in as a sequence
and M results will be output for each input n in N.
The coefficients array is of length n, and the coefficients for each target are contiguous.
Intercepts are optional but if provided must match the number of targets.
### Attributes
* **coefficients - FLOATS** :
Weights of the model(s).
* **intercepts - FLOATS** :
Weights of the intercepts, if used.
* **post_transform - STRING** (default is `'NONE'`):
Indicates the transform to apply to the regression output vector.
One of 'NONE,' 'SOFTMAX,' 'LOGISTIC,' 'SOFTMAX_ZERO,' or 'PROBIT'
* **targets - INT** (default is `'1'`):
The total number of regression targets, 1 if not defined.
### Inputs
- **X** (heterogeneous) - **T**:
Data to be regressed.
### Outputs
- **Y** (heterogeneous) - **tensor(float)**:
Regression outputs (one per target, per example).
### Type Constraints
* **T** in ( `tensor(double)`, `tensor(float)`, `tensor(int32)`, `tensor(int64)` ):
The input must be a tensor of a numeric type.