(l-onnx-docai-onnx-ml-Scaler)=
# ai.onnx.ml - Scaler
(l-onnx-opai-onnx-ml-scaler-1)=
## Scaler - 1 (ai.onnx.ml)
### Version
- **name**: [Scaler (GitHub)](https://github.com/onnx/onnx/blob/main/docs/Operators-ml.md#ai.onnx.ml.Scaler)
- **domain**: `ai.onnx.ml`
- **since_version**: `1`
- **function**: `False`
- **support_level**: `SupportType.COMMON`
- **shape inference**: `False`
This version of the operator has been available
**since version 1 of domain ai.onnx.ml**.
### Summary
Rescale input data, for example to standardize features by removing the mean and scaling to unit variance.
### Attributes
* **offset - FLOATS** :
First, offset by this.
Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.
* **scale - FLOATS** :
Second, multiply by this.
Can be length of features in an [N,F] tensor or length 1, in which case it applies to all features, regardless of dimension count.
Must be same length as 'offset'
### Inputs
- **X** (heterogeneous) - **T**:
Data to be scaled.
### Outputs
- **Y** (heterogeneous) - **tensor(float)**:
Scaled output data.
### Type Constraints
* **T** in ( `tensor(double)`, `tensor(float)`, `tensor(int32)`, `tensor(int64)` ):
The input must be a tensor of a numeric type.