Note
Go to the end to download the full example code
ONNX Runtime Backend for ONNX#
ONNX Runtime extends the onnx backend API to run predictions using this runtime. Let’s use the API to compute the prediction of a simple logistic regression model.
import skl2onnx
import onnxruntime
import onnx
import sklearn
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import numpy
from onnxruntime import get_device
import numpy as np
import onnxruntime.backend as backend
Let’s create an ONNX graph first.
data = load_iris()
X, Y = data.data, data.target
logreg = LogisticRegression(C=1e5).fit(X, Y)
model = skl2onnx.to_onnx(logreg, X.astype(np.float32))
name = "logreg_iris.onnx"
with open(name, "wb") as f:
f.write(model.SerializeToString())
Let’s use ONNX backend API to test it.
model = onnx.load(name)
rep = backend.prepare(model, "CPU")
x = np.array(
[[-1.0, -2.0, 5.0, 6.0], [-1.0, -2.0, -3.0, -4.0], [-1.0, -2.0, 7.0, 8.0]],
dtype=np.float32,
)
label, proba = rep.run(x)
print("label={}".format(label))
print("probabilities={}".format(proba))
Traceback (most recent call last):
File "/home/xadupre/github/sklearn-onnx/docs/examples/plot_backend.py", line 47, in <module>
rep = backend.prepare(model, "CPU")
File "/home/xadupre/github/onnxruntime/build/linux_cuda/Release/onnxruntime/backend/backend.py", line 143, in prepare
return cls.prepare(bin, device, **kwargs)
File "/home/xadupre/github/onnxruntime/build/linux_cuda/Release/onnxruntime/backend/backend.py", line 124, in prepare
raise RuntimeError(f"Incompatible device expected '{device}', got '{get_device()}'")
RuntimeError: Incompatible device expected 'CPU', got 'GPU'
The device depends on how the package was compiled, GPU or CPU.
print(get_device())
The backend can also directly load the model without using onnx.
rep = backend.prepare(name, "CPU")
x = np.array(
[[-1.0, -2.0, -3.0, -4.0], [-1.0, -2.0, -3.0, -4.0], [-1.0, -2.0, -3.0, -4.0]],
dtype=np.float32,
)
label, proba = rep.run(x)
print("label={}".format(label))
print("probabilities={}".format(proba))
The backend API is implemented by other frameworks and makes it easier to switch between multiple runtimes with the same API.
Versions used for this example
print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", onnxruntime.__version__)
print("skl2onnx: ", skl2onnx.__version__)
Total running time of the script: (0 minutes 2.873 seconds)