Tutorial#

The tutorial goes from a simple example which converts a pipeline to a more complex example involving operator not actually implemented in ONNX operators or ONNX ML operators.

The tutorial was tested with following version:

<<<

import catboost
import numpy
import scipy
import sklearn
import lightgbm
import onnx
import onnxmltools
import onnxruntime
import xgboost
import skl2onnx

mods = [numpy, scipy, sklearn, lightgbm, xgboost, catboost,
        onnx, onnxmltools, onnxruntime,
        skl2onnx]
mods = [(m.__name__, m.__version__) for m in mods]
mx = max(len(_[0]) for _ in mods) + 1
for name, vers in sorted(mods):
    print("%s%s%s" % (name, " " * (mx - len(name)), vers))

>>>

    <frozen importlib._bootstrap>:241: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216 from C header, got 232 from PyObject
    catboost    1.2
    lightgbm    4.0.0
    numpy       1.23.5
    onnx        1.15.0
    onnxmltools 1.11.2
    onnxruntime 1.16.0+cu118
    scipy       1.11.1
    skl2onnx    1.16.0
    sklearn     1.4.dev0
    xgboost     1.7.6