Benchmark a pipeline

The following example checks up on every step in a pipeline, compares and benchmarks the predictions.

Create a pipeline

We reuse the pipeline implemented in example Pipelining: chaining a PCA and a logistic regression. There is one change because ONNX-ML Imputer does not handle string type. This cannot be part of the final ONNX pipeline and must be removed. Look for comment starting with --- below.

import skl2onnx
import onnx
import sklearn
import numpy
from skl2onnx.helpers import collect_intermediate_steps
from timeit import timeit
from skl2onnx.helpers import compare_objects
import onnxruntime as rt
from skl2onnx.common.data_types import FloatTensorType
from skl2onnx import convert_sklearn
import numpy as np
import pandas as pd

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

logistic = LogisticRegression()
pca = PCA()
pipe = Pipeline(steps=[("pca", pca), ("logistic", logistic)])

digits = datasets.load_digits()
X_digits = digits.data[:1000]
y_digits = digits.target[:1000]

pipe.fit(X_digits, y_digits)
Pipeline(steps=[('pca', PCA()), ('logistic', LogisticRegression())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Conversion to ONNX

initial_types = [("input", FloatTensorType((None, X_digits.shape[1])))]
model_onnx = convert_sklearn(pipe, initial_types=initial_types, target_opset=12)

sess = rt.InferenceSession(
    model_onnx.SerializeToString(), providers=["CPUExecutionProvider"]
)
print("skl predict_proba")
print(pipe.predict_proba(X_digits[:2]))
onx_pred = sess.run(None, {"input": X_digits[:2].astype(np.float32)})[1]
df = pd.DataFrame(onx_pred)
print("onnx predict_proba")
print(df.values)
skl predict_proba
[[9.99998530e-01 7.81608913e-19 4.87445972e-10 1.79842281e-08
  3.58700552e-10 1.18138027e-06 4.14411048e-08 1.48275025e-07
  2.50162851e-08 5.51240031e-08]
 [1.37889361e-14 9.99999324e-01 9.17867424e-11 8.30390362e-13
  2.57277808e-07 8.84035060e-12 5.11781439e-11 2.83346411e-11
  4.18965302e-07 1.32796356e-13]]
onnx predict_proba
[[9.99998569e-01 7.81611026e-19 4.87444585e-10 1.79842026e-08
  3.58700042e-10 1.18137802e-06 4.14409520e-08 1.48274751e-07
  2.50162131e-08 5.51239410e-08]
 [1.37888807e-14 9.99999344e-01 9.17865159e-11 8.30387679e-13
  2.57277748e-07 8.84032951e-12 5.11779785e-11 2.83345725e-11
  4.18964021e-07 1.32796280e-13]]

Comparing outputs

compare_objects(pipe.predict_proba(X_digits[:2]), onx_pred)
# No exception so they are the same.

Benchmarks

print("scikit-learn")
print(timeit("pipe.predict_proba(X_digits[:1])", number=10000, globals=globals()))
print("onnxruntime")
print(
    timeit(
        "sess.run(None, {'input': X_digits[:1].astype(np.float32)})[1]",
        number=10000,
        globals=globals(),
    )
)
scikit-learn
1.7882446329967934
onnxruntime
0.13087403800454922

Intermediate steps

Let’s imagine the final output is wrong and we need to look into each component of the pipeline which one is failing. The following method modifies the scikit-learn pipeline to steal the intermediate outputs and produces an smaller ONNX graph for every operator.

steps = collect_intermediate_steps(pipe, "pipeline", initial_types)

assert len(steps) == 2

pipe.predict_proba(X_digits[:2])

for _i, step in enumerate(steps):
    onnx_step = step["onnx_step"]
    sess = rt.InferenceSession(
        onnx_step.SerializeToString(), providers=["CPUExecutionProvider"]
    )
    onnx_outputs = sess.run(None, {"input": X_digits[:2].astype(np.float32)})
    skl_outputs = step["model"]._debug.outputs
    if "transform" in skl_outputs:
        compare_objects(skl_outputs["transform"], onnx_outputs[0])
        print("benchmark", step["model"].__class__)
        print("scikit-learn")
        print(
            timeit(
                "step['model'].transform(X_digits[:1])", number=10000, globals=globals()
            )
        )
    else:
        compare_objects(skl_outputs["predict_proba"], onnx_outputs[1])
        print("benchmark", step["model"].__class__)
        print("scikit-learn")
        print(
            timeit(
                "step['model'].predict_proba(X_digits[:1])",
                number=10000,
                globals=globals(),
            )
        )
    print("onnxruntime")
    print(
        timeit(
            "sess.run(None, {'input': X_digits[:1].astype(np.float32)})",
            number=10000,
            globals=globals(),
        )
    )
benchmark <class 'sklearn.decomposition._pca.PCA'>
scikit-learn
0.5456181260015001
onnxruntime
0.08223319000535412
benchmark <class 'sklearn.linear_model._logistic.LogisticRegression'>
scikit-learn
0.6958408069986035
onnxruntime
0.12141343799885362

Versions used for this example

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", rt.__version__)
print("skl2onnx: ", skl2onnx.__version__)
numpy: 2.4.1
scikit-learn: 1.8.0
onnx:  1.21.0
onnxruntime:  1.24.0
skl2onnx:  1.20.0

Total running time of the script: (0 minutes 3.586 seconds)

Gallery generated by Sphinx-Gallery