Supported scikit-learn Models¶
skl2onnx currently can convert the following list
of models for skl2onnx . They
were tested using onnxruntime
.
All the following classes overloads the following methods
such as
OnnxSklearnPipeline
does. They wrap existing
scikit-learn classes by dynamically creating a new one
which inherits from OnnxOperatorMixin
which
implements to_onnx methods.
Covered Converters¶
Name |
Package |
Supported |
---|---|---|
ARDRegression |
linear_model |
Yes |
AdaBoostClassifier |
ensemble |
Yes |
AdaBoostRegressor |
ensemble |
Yes |
AdditiveChi2Sampler |
kernel_approximation |
|
AffinityPropagation |
cluster |
|
AgglomerativeClustering |
cluster |
|
BaggingClassifier |
ensemble |
Yes |
BaggingRegressor |
ensemble |
Yes |
BaseDecisionTree |
tree |
|
BaseEnsemble |
ensemble |
|
BayesianGaussianMixture |
mixture |
Yes |
BayesianRidge |
linear_model |
Yes |
BernoulliNB |
naive_bayes |
Yes |
BernoulliRBM |
neural_network |
|
Binarizer |
preprocessing |
Yes |
Birch |
cluster |
|
BisectingKMeans |
cluster |
|
CCA |
cross_decomposition |
|
CalibratedClassifierCV |
calibration |
Yes |
CategoricalNB |
naive_bayes |
Yes |
ClassifierChain |
multioutput |
|
ComplementNB |
naive_bayes |
Yes |
DBSCAN |
cluster |
|
DecisionTreeClassifier |
tree |
Yes |
DecisionTreeRegressor |
tree |
Yes |
DictVectorizer |
feature_extraction |
Yes |
DictionaryLearning |
decomposition |
|
ElasticNet |
linear_model |
Yes |
ElasticNetCV |
linear_model |
Yes |
EllipticEnvelope |
covariance |
|
EmpiricalCovariance |
covariance |
|
ExtraTreeClassifier |
tree |
Yes |
ExtraTreeRegressor |
tree |
Yes |
ExtraTreesClassifier |
ensemble |
Yes |
ExtraTreesRegressor |
ensemble |
Yes |
FactorAnalysis |
decomposition |
|
FastICA |
decomposition |
|
FeatureAgglomeration |
cluster |
|
FeatureHasher |
feature_extraction |
Yes |
FixedThresholdClassifier |
model_selection |
|
FunctionTransformer |
preprocessing |
Yes |
GammaRegressor |
linear_model |
Yes |
GaussianMixture |
mixture |
Yes |
GaussianNB |
naive_bayes |
Yes |
GaussianProcessClassifier |
gaussian_process |
Yes |
GaussianProcessRegressor |
gaussian_process |
Yes |
GaussianRandomProjection |
random_projection |
Yes |
GenericUnivariateSelect |
feature_selection |
Yes |
GradientBoostingClassifier |
ensemble |
Yes |
GradientBoostingRegressor |
ensemble |
Yes |
GraphicalLasso |
covariance |
|
GraphicalLassoCV |
covariance |
|
GridSearchCV |
model_selection |
Yes |
HDBSCAN |
cluster |
|
HistGradientBoostingClassifier |
ensemble |
Yes |
HistGradientBoostingRegressor |
ensemble |
Yes |
HuberRegressor |
linear_model |
Yes |
IncrementalPCA |
decomposition |
Yes |
IsolationForest |
ensemble |
Yes |
IsotonicRegression |
isotonic |
|
KBinsDiscretizer |
preprocessing |
Yes |
KMeans |
cluster |
Yes |
KNNImputer |
impute |
Yes |
KNeighborsClassifier |
neighbors |
Yes |
KNeighborsRegressor |
neighbors |
Yes |
KNeighborsTransformer |
neighbors |
Yes |
KernelCenterer |
preprocessing |
Yes |
KernelDensity |
neighbors |
|
KernelPCA |
decomposition |
Yes |
KernelRidge |
kernel_ridge |
|
LabelBinarizer |
preprocessing |
Yes |
LabelEncoder |
preprocessing |
Yes |
LabelPropagation |
semi_supervised |
|
LabelSpreading |
semi_supervised |
|
Lars |
linear_model |
Yes |
LarsCV |
linear_model |
Yes |
Lasso |
linear_model |
Yes |
LassoCV |
linear_model |
Yes |
LassoLars |
linear_model |
Yes |
LassoLarsCV |
linear_model |
Yes |
LassoLarsIC |
linear_model |
Yes |
LatentDirichletAllocation |
decomposition |
|
LedoitWolf |
covariance |
|
LinearDiscriminantAnalysis |
discriminant_analysis |
Yes |
LinearRegression |
linear_model |
Yes |
LinearSVC |
svm |
Yes |
LinearSVR |
svm |
Yes |
LocalOutlierFactor |
neighbors |
Yes |
LogisticRegression |
linear_model |
Yes |
LogisticRegressionCV |
linear_model |
Yes |
MLPClassifier |
neural_network |
Yes |
MLPRegressor |
neural_network |
Yes |
MaxAbsScaler |
preprocessing |
Yes |
MeanShift |
cluster |
|
MinCovDet |
covariance |
|
MinMaxScaler |
preprocessing |
Yes |
MiniBatchDictionaryLearning |
decomposition |
|
MiniBatchKMeans |
cluster |
Yes |
MiniBatchNMF |
decomposition |
|
MiniBatchSparsePCA |
decomposition |
|
MissingIndicator |
impute |
|
MultiLabelBinarizer |
preprocessing |
|
MultiOutputClassifier |
multioutput |
Yes |
MultiOutputRegressor |
multioutput |
Yes |
MultiTaskElasticNet |
linear_model |
Yes |
MultiTaskElasticNetCV |
linear_model |
Yes |
MultiTaskLasso |
linear_model |
Yes |
MultiTaskLassoCV |
linear_model |
Yes |
MultinomialNB |
naive_bayes |
Yes |
NMF |
decomposition |
|
NearestCentroid |
neighbors |
|
NearestNeighbors |
neighbors |
Yes |
NeighborhoodComponentsAnalysis |
neighbors |
Yes |
Normalizer |
preprocessing |
Yes |
NuSVC |
svm |
Yes |
NuSVR |
svm |
Yes |
Nystroem |
kernel_approximation |
|
OAS |
covariance |
|
OPTICS |
cluster |
|
OneClassSVM |
svm |
Yes |
OneHotEncoder |
preprocessing |
Yes |
OneVsOneClassifier |
multiclass |
Yes |
OneVsRestClassifier |
multiclass |
Yes |
OrdinalEncoder |
preprocessing |
Yes |
OrthogonalMatchingPursuit |
linear_model |
Yes |
OrthogonalMatchingPursuitCV |
linear_model |
Yes |
OutputCodeClassifier |
multiclass |
|
PCA |
decomposition |
Yes |
PLSCanonical |
cross_decomposition |
|
PLSRegression |
cross_decomposition |
Yes |
PLSSVD |
cross_decomposition |
|
PassiveAggressiveClassifier |
linear_model |
Yes |
PassiveAggressiveRegressor |
linear_model |
Yes |
Perceptron |
linear_model |
Yes |
PoissonRegressor |
linear_model |
Yes |
PolynomialCountSketch |
kernel_approximation |
|
PolynomialFeatures |
preprocessing |
Yes |
PowerTransformer |
preprocessing |
Yes |
QuadraticDiscriminantAnalysis |
discriminant_analysis |
Yes |
QuantileRegressor |
linear_model |
Yes |
QuantileTransformer |
preprocessing |
|
RANSACRegressor |
linear_model |
Yes |
RBFSampler |
kernel_approximation |
|
RFE |
feature_selection |
Yes |
RFECV |
feature_selection |
Yes |
RadiusNeighborsClassifier |
neighbors |
Yes |
RadiusNeighborsRegressor |
neighbors |
Yes |
RadiusNeighborsTransformer |
neighbors |
|
RandomForestClassifier |
ensemble |
Yes |
RandomForestRegressor |
ensemble |
Yes |
RandomTreesEmbedding |
ensemble |
Yes |
RandomizedSearchCV |
model_selection |
|
RegressorChain |
multioutput |
|
Ridge |
linear_model |
Yes |
RidgeCV |
linear_model |
Yes |
RidgeClassifier |
linear_model |
Yes |
RidgeClassifierCV |
linear_model |
Yes |
RobustScaler |
preprocessing |
Yes |
SGDClassifier |
linear_model |
Yes |
SGDOneClassSVM |
linear_model |
Yes |
SGDRegressor |
linear_model |
Yes |
SVC |
svm |
Yes |
SVR |
svm |
Yes |
SelectFdr |
feature_selection |
Yes |
SelectFpr |
feature_selection |
Yes |
SelectFromModel |
feature_selection |
Yes |
SelectFwe |
feature_selection |
Yes |
SelectKBest |
feature_selection |
Yes |
SelectPercentile |
feature_selection |
Yes |
SelfTrainingClassifier |
semi_supervised |
|
SequentialFeatureSelector |
feature_selection |
|
ShrunkCovariance |
covariance |
|
SimpleImputer |
impute |
Yes |
SkewedChi2Sampler |
kernel_approximation |
|
SparseCoder |
decomposition |
|
SparsePCA |
decomposition |
|
SparseRandomProjection |
random_projection |
|
SpectralBiclustering |
cluster |
|
SpectralClustering |
cluster |
|
SpectralCoclustering |
cluster |
|
SplineTransformer |
preprocessing |
|
StackingClassifier |
ensemble |
Yes |
StackingRegressor |
ensemble |
Yes |
StandardScaler |
preprocessing |
Yes |
TargetEncoder |
preprocessing |
|
TheilSenRegressor |
linear_model |
Yes |
TransformedTargetRegressor |
compose |
|
TruncatedSVD |
decomposition |
Yes |
TunedThresholdClassifierCV |
model_selection |
Yes |
TweedieRegressor |
linear_model |
Yes |
VarianceThreshold |
feature_selection |
Yes |
VotingClassifier |
ensemble |
Yes |
VotingRegressor |
ensemble |
Yes |
scikit-learn’s version is 1.6.dev0. 131/193 models are covered.
Converters Documentation¶
OnnxCastRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxCastRegressor(estimator, *, dtype=<class 'numpy.float32'>)¶
OnnxOperatorMixin for CastRegressor
OnnxCastTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxCastTransformer(*, dtype=<class 'numpy.float32'>)¶
OnnxOperatorMixin for CastTransformer
OnnxReplaceTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxReplaceTransformer(*, from_value=0, to_value=nan, dtype=<class 'numpy.float32'>)¶
OnnxOperatorMixin for ReplaceTransformer
OnnxSklearnARDRegression¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnARDRegression(*, max_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, compute_score=False, threshold_lambda=10000.0, fit_intercept=True, copy_X=True, verbose=False)¶
OnnxOperatorMixin for ARDRegression
OnnxSklearnAdaBoostClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnAdaBoostClassifier(estimator=None, *, n_estimators=50, learning_rate=1.0, algorithm='SAMME.R', random_state=None)¶
OnnxOperatorMixin for AdaBoostClassifier
OnnxSklearnAdaBoostRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnAdaBoostRegressor(estimator=None, *, n_estimators=50, learning_rate=1.0, loss='linear', random_state=None)¶
OnnxOperatorMixin for AdaBoostRegressor
OnnxSklearnBaggingClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBaggingClassifier(estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)¶
OnnxOperatorMixin for BaggingClassifier
OnnxSklearnBaggingRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBaggingRegressor(estimator=None, n_estimators=10, *, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0)¶
OnnxOperatorMixin for BaggingRegressor
OnnxSklearnBayesianGaussianMixture¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBayesianGaussianMixture(*, n_components=1, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weight_concentration_prior_type='dirichlet_process', weight_concentration_prior=None, mean_precision_prior=None, mean_prior=None, degrees_of_freedom_prior=None, covariance_prior=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10)¶
OnnxOperatorMixin for BayesianGaussianMixture
OnnxSklearnBayesianRidge¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBayesianRidge(*, max_iter=300, tol=0.001, alpha_1=1e-06, alpha_2=1e-06, lambda_1=1e-06, lambda_2=1e-06, alpha_init=None, lambda_init=None, compute_score=False, fit_intercept=True, copy_X=True, verbose=False)¶
OnnxOperatorMixin for BayesianRidge
OnnxSklearnBernoulliNB¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBernoulliNB(*, alpha=1.0, force_alpha=True, binarize=0.0, fit_prior=True, class_prior=None)¶
OnnxOperatorMixin for BernoulliNB
OnnxSklearnBinarizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnBinarizer(*, threshold=0.0, copy=True)¶
OnnxOperatorMixin for Binarizer
OnnxSklearnCalibratedClassifierCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnCalibratedClassifierCV(estimator=None, *, method='sigmoid', cv=None, n_jobs=None, ensemble=True)¶
OnnxOperatorMixin for CalibratedClassifierCV
OnnxSklearnCategoricalNB¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnCategoricalNB(*, alpha=1.0, force_alpha=True, fit_prior=True, class_prior=None, min_categories=None)¶
OnnxOperatorMixin for CategoricalNB
OnnxSklearnComplementNB¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnComplementNB(*, alpha=1.0, force_alpha=True, fit_prior=True, class_prior=None, norm=False)¶
OnnxOperatorMixin for ComplementNB
OnnxSklearnCountVectorizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnCountVectorizer(*, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern='(?u)\\b\\w\\w+\\b', ngram_range=(1, 1), analyzer='word', max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class 'numpy.int64'>)¶
OnnxOperatorMixin for CountVectorizer
OnnxSklearnDecisionTreeClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnDecisionTreeClassifier(*, criterion='gini', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)¶
OnnxOperatorMixin for DecisionTreeClassifier
OnnxSklearnDecisionTreeRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnDecisionTreeRegressor(*, criterion='squared_error', splitter='best', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, ccp_alpha=0.0, monotonic_cst=None)¶
OnnxOperatorMixin for DecisionTreeRegressor
OnnxSklearnDictVectorizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnDictVectorizer(*, dtype=<class 'numpy.float64'>, separator='=', sparse=True, sort=True)¶
OnnxOperatorMixin for DictVectorizer
OnnxSklearnElasticNet¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, precompute=False, max_iter=1000, copy_X=True, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for ElasticNet
OnnxSklearnElasticNetCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnElasticNetCV(*, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, precompute='auto', max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=None, positive=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for ElasticNetCV
OnnxSklearnExtraTreeClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnExtraTreeClassifier(*, criterion='gini', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None, ccp_alpha=0.0, monotonic_cst=None)¶
OnnxOperatorMixin for ExtraTreeClassifier
OnnxSklearnExtraTreeRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnExtraTreeRegressor(*, criterion='squared_error', splitter='random', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, random_state=None, min_impurity_decrease=0.0, max_leaf_nodes=None, ccp_alpha=0.0, monotonic_cst=None)¶
OnnxOperatorMixin for ExtraTreeRegressor
OnnxSklearnExtraTreesClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnExtraTreesClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None, monotonic_cst=None)¶
OnnxOperatorMixin for ExtraTreesClassifier
OnnxSklearnExtraTreesRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnExtraTreesRegressor(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=False, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None, monotonic_cst=None)¶
OnnxOperatorMixin for ExtraTreesRegressor
OnnxSklearnFeatureHasher¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnFeatureHasher(n_features=1048576, *, input_type='dict', dtype=<class 'numpy.float64'>, alternate_sign=True)¶
OnnxOperatorMixin for FeatureHasher
OnnxSklearnFunctionTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnFunctionTransformer(func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, feature_names_out=None, kw_args=None, inv_kw_args=None)¶
OnnxOperatorMixin for FunctionTransformer
OnnxSklearnGammaRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGammaRegressor(*, alpha=1.0, fit_intercept=True, solver='lbfgs', max_iter=100, tol=0.0001, warm_start=False, verbose=0)¶
OnnxOperatorMixin for GammaRegressor
OnnxSklearnGaussianMixture¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGaussianMixture(n_components=1, *, covariance_type='full', tol=0.001, reg_covar=1e-06, max_iter=100, n_init=1, init_params='kmeans', weights_init=None, means_init=None, precisions_init=None, random_state=None, warm_start=False, verbose=0, verbose_interval=10)¶
OnnxOperatorMixin for GaussianMixture
OnnxSklearnGaussianNB¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGaussianNB(*, priors=None, var_smoothing=1e-09)¶
OnnxOperatorMixin for GaussianNB
OnnxSklearnGaussianProcessClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGaussianProcessClassifier(kernel=None, *, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class='one_vs_rest', n_jobs=None)¶
OnnxOperatorMixin for GaussianProcessClassifier
OnnxSklearnGaussianProcessRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGaussianProcessRegressor(kernel=None, *, alpha=1e-10, optimizer='fmin_l_bfgs_b', n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, n_targets=None, random_state=None)¶
OnnxOperatorMixin for GaussianProcessRegressor
OnnxSklearnGaussianRandomProjection¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGaussianRandomProjection(n_components='auto', *, eps=0.1, compute_inverse_components=False, random_state=None)¶
OnnxOperatorMixin for GaussianRandomProjection
OnnxSklearnGenericUnivariateSelect¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGenericUnivariateSelect(score_func=<function f_classif>, *, mode='percentile', param=1e-05)¶
OnnxOperatorMixin for GenericUnivariateSelect
OnnxSklearnGradientBoostingClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGradientBoostingClassifier(*, loss='log_loss', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)¶
OnnxOperatorMixin for GradientBoostingClassifier
OnnxSklearnGradientBoostingRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGradientBoostingRegressor(*, loss='squared_error', learning_rate=0.1, n_estimators=100, subsample=1.0, criterion='friedman_mse', min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, validation_fraction=0.1, n_iter_no_change=None, tol=0.0001, ccp_alpha=0.0)¶
OnnxOperatorMixin for GradientBoostingRegressor
OnnxSklearnGridSearchCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnGridSearchCV(estimator, param_grid, *, scoring=None, n_jobs=None, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score=nan, return_train_score=False)¶
OnnxOperatorMixin for GridSearchCV
OnnxSklearnHistGradientBoostingClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnHistGradientBoostingClassifier(loss='log_loss', *, learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None, min_samples_leaf=20, l2_regularization=0.0, max_features=1.0, max_bins=255, categorical_features='warn', monotonic_cst=None, interaction_cst=None, warm_start=False, early_stopping='auto', scoring='loss', validation_fraction=0.1, n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None, class_weight=None)¶
OnnxOperatorMixin for HistGradientBoostingClassifier
OnnxSklearnHistGradientBoostingRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnHistGradientBoostingRegressor(loss='squared_error', *, quantile=None, learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None, min_samples_leaf=20, l2_regularization=0.0, max_features=1.0, max_bins=255, categorical_features='warn', monotonic_cst=None, interaction_cst=None, warm_start=False, early_stopping='auto', scoring='loss', validation_fraction=0.1, n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None)¶
OnnxOperatorMixin for HistGradientBoostingRegressor
OnnxSklearnHuberRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnHuberRegressor(*, epsilon=1.35, max_iter=100, alpha=0.0001, warm_start=False, fit_intercept=True, tol=1e-05)¶
OnnxOperatorMixin for HuberRegressor
OnnxSklearnIncrementalPCA¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnIncrementalPCA(n_components=None, *, whiten=False, copy=True, batch_size=None)¶
OnnxOperatorMixin for IncrementalPCA
OnnxSklearnIsolationForest¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnIsolationForest(*, n_estimators=100, max_samples='auto', contamination='auto', max_features=1.0, bootstrap=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)¶
OnnxOperatorMixin for IsolationForest
OnnxSklearnKBinsDiscretizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKBinsDiscretizer(n_bins=5, *, encode='onehot', strategy='quantile', dtype=None, subsample=200000, random_state=None)¶
OnnxOperatorMixin for KBinsDiscretizer
OnnxSklearnKMeans¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKMeans(n_clusters=8, *, init='k-means++', n_init='auto', max_iter=300, tol=0.0001, verbose=0, random_state=None, copy_x=True, algorithm='lloyd')¶
OnnxOperatorMixin for KMeans
OnnxSklearnKNNImputer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKNNImputer(*, missing_values=nan, n_neighbors=5, weights='uniform', metric='nan_euclidean', copy=True, add_indicator=False, keep_empty_features=False)¶
OnnxOperatorMixin for KNNImputer
OnnxSklearnKNeighborsClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKNeighborsClassifier(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for KNeighborsClassifier
OnnxSklearnKNeighborsRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKNeighborsRegressor(n_neighbors=5, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for KNeighborsRegressor
OnnxSklearnKNeighborsTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKNeighborsTransformer(*, mode='distance', n_neighbors=5, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for KNeighborsTransformer
OnnxSklearnKernelCenterer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKernelCenterer¶
OnnxOperatorMixin for KernelCenterer
OnnxSklearnKernelPCA¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnKernelPCA(n_components=None, *, kernel='linear', gamma=None, degree=3, coef0=1, kernel_params=None, alpha=1.0, fit_inverse_transform=False, eigen_solver='auto', tol=0, max_iter=None, iterated_power='auto', remove_zero_eig=False, random_state=None, copy_X=True, n_jobs=None)¶
OnnxOperatorMixin for KernelPCA
OnnxSklearnLabelBinarizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLabelBinarizer(*, neg_label=0, pos_label=1, sparse_output=False)¶
OnnxOperatorMixin for LabelBinarizer
OnnxSklearnLabelEncoder¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLabelEncoder¶
OnnxOperatorMixin for LabelEncoder
OnnxSklearnLars¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLars(*, fit_intercept=True, verbose=False, precompute='auto', n_nonzero_coefs=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, jitter=None, random_state=None)¶
OnnxOperatorMixin for Lars
OnnxSklearnLarsCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLarsCV(*, fit_intercept=True, verbose=False, max_iter=500, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True)¶
OnnxOperatorMixin for LarsCV
OnnxSklearnLasso¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLasso(alpha=1.0, *, fit_intercept=True, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for Lasso
OnnxSklearnLassoCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, precompute='auto', max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for LassoCV
OnnxSklearnLassoLars¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLassoLars(alpha=1.0, *, fit_intercept=True, verbose=False, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, fit_path=True, positive=False, jitter=None, random_state=None)¶
OnnxOperatorMixin for LassoLars
OnnxSklearnLassoLarsCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLassoLarsCV(*, fit_intercept=True, verbose=False, max_iter=500, precompute='auto', cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False)¶
OnnxOperatorMixin for LassoLarsCV
OnnxSklearnLassoLarsIC¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLassoLarsIC(criterion='aic', *, fit_intercept=True, verbose=False, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False, noise_variance=None)¶
OnnxOperatorMixin for LassoLarsIC
OnnxSklearnLinearDiscriminantAnalysis¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLinearDiscriminantAnalysis(solver='svd', shrinkage=None, priors=None, n_components=None, store_covariance=False, tol=0.0001, covariance_estimator=None)¶
OnnxOperatorMixin for LinearDiscriminantAnalysis
OnnxSklearnLinearRegression¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)¶
OnnxOperatorMixin for LinearRegression
OnnxSklearnLinearSVC¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLinearSVC(penalty='l2', loss='squared_hinge', *, dual='auto', tol=0.0001, C=1.0, multi_class='ovr', fit_intercept=True, intercept_scaling=1, class_weight=None, verbose=0, random_state=None, max_iter=1000)¶
OnnxOperatorMixin for LinearSVC
OnnxSklearnLinearSVR¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLinearSVR(*, epsilon=0.0, tol=0.0001, C=1.0, loss='epsilon_insensitive', fit_intercept=True, intercept_scaling=1.0, dual='auto', verbose=0, random_state=None, max_iter=1000)¶
OnnxOperatorMixin for LinearSVR
OnnxSklearnLocalOutlierFactor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLocalOutlierFactor(n_neighbors=20, *, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)¶
OnnxOperatorMixin for LocalOutlierFactor
OnnxSklearnLogisticRegression¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='deprecated', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None)¶
OnnxOperatorMixin for LogisticRegression
OnnxSklearnLogisticRegressionCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnLogisticRegressionCV(*, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=0.0001, max_iter=100, class_weight=None, n_jobs=None, verbose=0, refit=True, intercept_scaling=1.0, multi_class='deprecated', random_state=None, l1_ratios=None)¶
OnnxOperatorMixin for LogisticRegressionCV
OnnxSklearnMLPClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMLPClassifier(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)¶
OnnxOperatorMixin for MLPClassifier
OnnxSklearnMLPRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMLPRegressor(hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10, max_fun=15000)¶
OnnxOperatorMixin for MLPRegressor
OnnxSklearnMaxAbsScaler¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMaxAbsScaler(*, copy=True)¶
OnnxOperatorMixin for MaxAbsScaler
OnnxSklearnMinMaxScaler¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMinMaxScaler(feature_range=(0, 1), *, copy=True, clip=False)¶
OnnxOperatorMixin for MinMaxScaler
OnnxSklearnMiniBatchKMeans¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMiniBatchKMeans(n_clusters=8, *, init='k-means++', max_iter=100, batch_size=1024, verbose=0, compute_labels=True, random_state=None, tol=0.0, max_no_improvement=10, init_size=None, n_init='auto', reassignment_ratio=0.01)¶
OnnxOperatorMixin for MiniBatchKMeans
OnnxSklearnMultiOutputClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiOutputClassifier(estimator, *, n_jobs=None)¶
OnnxOperatorMixin for MultiOutputClassifier
OnnxSklearnMultiOutputRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiOutputRegressor(estimator, *, n_jobs=None)¶
OnnxOperatorMixin for MultiOutputRegressor
OnnxSklearnMultiTaskElasticNet¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiTaskElasticNet(alpha=1.0, *, l1_ratio=0.5, fit_intercept=True, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for MultiTaskElasticNet
OnnxSklearnMultiTaskElasticNetCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiTaskElasticNetCV(*, l1_ratio=0.5, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, max_iter=1000, tol=0.0001, cv=None, copy_X=True, verbose=0, n_jobs=None, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for MultiTaskElasticNetCV
OnnxSklearnMultiTaskLasso¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiTaskLasso(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for MultiTaskLasso
OnnxSklearnMultiTaskLassoCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultiTaskLassoCV(*, eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, random_state=None, selection='cyclic')¶
OnnxOperatorMixin for MultiTaskLassoCV
OnnxSklearnMultinomialNB¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnMultinomialNB(*, alpha=1.0, force_alpha=True, fit_prior=True, class_prior=None)¶
OnnxOperatorMixin for MultinomialNB
OnnxSklearnNearestNeighbors¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnNearestNeighbors(*, n_neighbors=5, radius=1.0, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for NearestNeighbors
OnnxSklearnNeighborhoodComponentsAnalysis¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnNeighborhoodComponentsAnalysis(n_components=None, *, init='auto', warm_start=False, max_iter=50, tol=1e-05, callback=None, verbose=0, random_state=None)¶
OnnxOperatorMixin for NeighborhoodComponentsAnalysis
OnnxSklearnNormalizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnNormalizer(norm='l2', *, copy=True)¶
OnnxOperatorMixin for Normalizer
OnnxSklearnNuSVC¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnNuSVC(*, nu=0.5, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)¶
OnnxOperatorMixin for NuSVC
OnnxSklearnNuSVR¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnNuSVR(*, nu=0.5, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, tol=0.001, cache_size=200, verbose=False, max_iter=-1)¶
OnnxOperatorMixin for NuSVR
OnnxSklearnOneClassSVM¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOneClassSVM(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, nu=0.5, shrinking=True, cache_size=200, verbose=False, max_iter=-1)¶
OnnxOperatorMixin for OneClassSVM
OnnxSklearnOneHotEncoder¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOneHotEncoder(*, categories='auto', drop=None, sparse_output=True, dtype=<class 'numpy.float64'>, handle_unknown='error', min_frequency=None, max_categories=None, feature_name_combiner='concat')¶
OnnxOperatorMixin for OneHotEncoder
OnnxSklearnOneVsOneClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOneVsOneClassifier(estimator, *, n_jobs=None)¶
OnnxOperatorMixin for OneVsOneClassifier
OnnxSklearnOneVsRestClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOneVsRestClassifier(estimator, *, n_jobs=None, verbose=0)¶
OnnxOperatorMixin for OneVsRestClassifier
OnnxSklearnOrdinalEncoder¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOrdinalEncoder(*, categories='auto', dtype=<class 'numpy.float64'>, handle_unknown='error', unknown_value=None, encoded_missing_value=nan, min_frequency=None, max_categories=None)¶
OnnxOperatorMixin for OrdinalEncoder
OnnxSklearnOrthogonalMatchingPursuit¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOrthogonalMatchingPursuit(*, n_nonzero_coefs=None, tol=None, fit_intercept=True, precompute='auto')¶
OnnxOperatorMixin for OrthogonalMatchingPursuit
OnnxSklearnOrthogonalMatchingPursuitCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnOrthogonalMatchingPursuitCV(*, copy=True, fit_intercept=True, max_iter=None, cv=None, n_jobs=None, verbose=False)¶
OnnxOperatorMixin for OrthogonalMatchingPursuitCV
OnnxSklearnPCA¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPCA(n_components=None, *, copy=True, whiten=False, svd_solver='auto', tol=0.0, iterated_power='auto', n_oversamples=10, power_iteration_normalizer='auto', random_state=None)¶
OnnxOperatorMixin for PCA
OnnxSklearnPLSRegression¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPLSRegression(n_components=2, *, scale=True, max_iter=500, tol=1e-06, copy=True)¶
OnnxOperatorMixin for PLSRegression
OnnxSklearnPassiveAggressiveClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPassiveAggressiveClassifier(*, C=1.0, fit_intercept=True, max_iter=1000, tol=0.001, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss='hinge', n_jobs=None, random_state=None, warm_start=False, class_weight=None, average=False)¶
OnnxOperatorMixin for PassiveAggressiveClassifier
OnnxSklearnPassiveAggressiveRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPassiveAggressiveRegressor(*, C=1.0, fit_intercept=True, max_iter=1000, tol=0.001, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, shuffle=True, verbose=0, loss='epsilon_insensitive', epsilon=0.1, random_state=None, warm_start=False, average=False)¶
OnnxOperatorMixin for PassiveAggressiveRegressor
OnnxSklearnPerceptron¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPerceptron(*, penalty=None, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, eta0=1.0, n_jobs=None, random_state=0, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False)¶
OnnxOperatorMixin for Perceptron
OnnxSklearnPoissonRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPoissonRegressor(*, alpha=1.0, fit_intercept=True, solver='lbfgs', max_iter=100, tol=0.0001, warm_start=False, verbose=0)¶
OnnxOperatorMixin for PoissonRegressor
OnnxSklearnPolynomialFeatures¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True, order='C')¶
OnnxOperatorMixin for PolynomialFeatures
OnnxSklearnPowerTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPowerTransformer(method='yeo-johnson', *, standardize=True, copy=True)¶
OnnxOperatorMixin for PowerTransformer
OnnxSklearnQuadraticDiscriminantAnalysis¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnQuadraticDiscriminantAnalysis(*, priors=None, reg_param=0.0, store_covariance=False, tol=0.0001)¶
OnnxOperatorMixin for QuadraticDiscriminantAnalysis
OnnxSklearnQuantileRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnQuantileRegressor(*, quantile=0.5, alpha=1.0, fit_intercept=True, solver='highs', solver_options=None)¶
OnnxOperatorMixin for QuantileRegressor
OnnxSklearnRANSACRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRANSACRegressor(estimator=None, *, min_samples=None, residual_threshold=None, is_data_valid=None, is_model_valid=None, max_trials=100, max_skips=inf, stop_n_inliers=inf, stop_score=inf, stop_probability=0.99, loss='absolute_error', random_state=None)¶
OnnxOperatorMixin for RANSACRegressor
OnnxSklearnRFE¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRFE(estimator, *, n_features_to_select=None, step=1, verbose=0, importance_getter='auto')¶
OnnxOperatorMixin for RFE
OnnxSklearnRFECV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRFECV(estimator, *, step=1, min_features_to_select=1, cv=None, scoring=None, verbose=0, n_jobs=None, importance_getter='auto')¶
OnnxOperatorMixin for RFECV
OnnxSklearnRadiusNeighborsClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRadiusNeighborsClassifier(radius=1.0, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for RadiusNeighborsClassifier
OnnxSklearnRadiusNeighborsRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRadiusNeighborsRegressor(radius=1.0, *, weights='uniform', algorithm='auto', leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None)¶
OnnxOperatorMixin for RadiusNeighborsRegressor
OnnxSklearnRandomForestClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRandomForestClassifier(n_estimators=100, *, criterion='gini', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None, monotonic_cst=None)¶
OnnxOperatorMixin for RandomForestClassifier
OnnxSklearnRandomForestRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRandomForestRegressor(n_estimators=100, *, criterion='squared_error', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None, monotonic_cst=None)¶
OnnxOperatorMixin for RandomForestRegressor
OnnxSklearnRandomTreesEmbedding¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRandomTreesEmbedding(n_estimators=100, *, max_depth=5, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_leaf_nodes=None, min_impurity_decrease=0.0, sparse_output=True, n_jobs=None, random_state=None, verbose=0, warm_start=False)¶
OnnxOperatorMixin for RandomTreesEmbedding
OnnxSklearnRidge¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRidge(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, solver='auto', positive=False, random_state=None)¶
OnnxOperatorMixin for Ridge
OnnxSklearnRidgeCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRidgeCV(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, scoring=None, cv=None, gcv_mode=None, store_cv_results=None, alpha_per_target=False, store_cv_values='deprecated')¶
OnnxOperatorMixin for RidgeCV
OnnxSklearnRidgeClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRidgeClassifier(alpha=1.0, *, fit_intercept=True, copy_X=True, max_iter=None, tol=0.0001, class_weight=None, solver='auto', positive=False, random_state=None)¶
OnnxOperatorMixin for RidgeClassifier
OnnxSklearnRidgeClassifierCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRidgeClassifierCV(alphas=(0.1, 1.0, 10.0), *, fit_intercept=True, scoring=None, cv=None, class_weight=None, store_cv_results=None, store_cv_values='deprecated')¶
OnnxOperatorMixin for RidgeClassifierCV
OnnxSklearnRobustScaler¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnRobustScaler(*, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True, unit_variance=False)¶
OnnxOperatorMixin for RobustScaler
OnnxSklearnSGDClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSGDClassifier(loss='hinge', *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, n_jobs=None, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False)¶
OnnxOperatorMixin for SGDClassifier
OnnxSklearnSGDOneClassSVM¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSGDOneClassSVM(nu=0.5, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, random_state=None, learning_rate='optimal', eta0=0.0, power_t=0.5, warm_start=False, average=False)¶
OnnxOperatorMixin for SGDOneClassSVM
OnnxSklearnSGDRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSGDRegressor(loss='squared_error', *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate='invscaling', eta0=0.01, power_t=0.25, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, warm_start=False, average=False)¶
OnnxOperatorMixin for SGDRegressor
OnnxSklearnSVC¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)¶
OnnxOperatorMixin for SVC
OnnxSklearnSVR¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSVR(*, kernel='rbf', degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)¶
OnnxOperatorMixin for SVR
OnnxSklearnSelectFdr¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectFdr(score_func=<function f_classif>, *, alpha=0.05)¶
OnnxOperatorMixin for SelectFdr
OnnxSklearnSelectFpr¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectFpr(score_func=<function f_classif>, *, alpha=0.05)¶
OnnxOperatorMixin for SelectFpr
OnnxSklearnSelectFromModel¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectFromModel(estimator, *, threshold=None, prefit=False, norm_order=1, max_features=None, importance_getter='auto')¶
OnnxOperatorMixin for SelectFromModel
OnnxSklearnSelectFwe¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectFwe(score_func=<function f_classif>, *, alpha=0.05)¶
OnnxOperatorMixin for SelectFwe
OnnxSklearnSelectKBest¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectKBest(score_func=<function f_classif>, *, k=10)¶
OnnxOperatorMixin for SelectKBest
OnnxSklearnSelectPercentile¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSelectPercentile(score_func=<function f_classif>, *, percentile=10)¶
OnnxOperatorMixin for SelectPercentile
OnnxSklearnSimpleImputer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnSimpleImputer(*, missing_values=nan, strategy='mean', fill_value=None, copy=True, add_indicator=False, keep_empty_features=False)¶
OnnxOperatorMixin for SimpleImputer
OnnxSklearnStackingClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnStackingClassifier(estimators, final_estimator=None, *, cv=None, stack_method='auto', n_jobs=None, passthrough=False, verbose=0)¶
OnnxOperatorMixin for StackingClassifier
OnnxSklearnStackingRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnStackingRegressor(estimators, final_estimator=None, *, cv=None, n_jobs=None, passthrough=False, verbose=0)¶
OnnxOperatorMixin for StackingRegressor
OnnxSklearnStandardScaler¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnStandardScaler(*, copy=True, with_mean=True, with_std=True)¶
OnnxOperatorMixin for StandardScaler
OnnxSklearnTfidfTransformer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTfidfTransformer(*, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False)¶
OnnxOperatorMixin for TfidfTransformer
OnnxSklearnTfidfVectorizer¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTfidfVectorizer(*, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, analyzer='word', stop_words=None, token_pattern='(?u)\\b\\w\\w+\\b', ngram_range=(1, 1), max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class 'numpy.float64'>, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False)¶
OnnxOperatorMixin for TfidfVectorizer
OnnxSklearnTheilSenRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTheilSenRegressor(*, fit_intercept=True, copy_X=True, max_subpopulation=10000.0, n_subsamples=None, max_iter=300, tol=0.001, random_state=None, n_jobs=None, verbose=False)¶
OnnxOperatorMixin for TheilSenRegressor
OnnxSklearnTruncatedSVD¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTruncatedSVD(n_components=2, *, algorithm='randomized', n_iter=5, n_oversamples=10, power_iteration_normalizer='auto', random_state=None, tol=0.0)¶
OnnxOperatorMixin for TruncatedSVD
OnnxSklearnTunedThresholdClassifierCV¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTunedThresholdClassifierCV(estimator, *, scoring='balanced_accuracy', response_method='auto', thresholds=100, cv=None, refit=True, n_jobs=None, random_state=None, store_cv_results=False)¶
OnnxOperatorMixin for TunedThresholdClassifierCV
OnnxSklearnTweedieRegressor¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnTweedieRegressor(*, power=0.0, alpha=1.0, fit_intercept=True, link='auto', solver='lbfgs', max_iter=100, tol=0.0001, warm_start=False, verbose=0)¶
OnnxOperatorMixin for TweedieRegressor
OnnxSklearnVarianceThreshold¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnVarianceThreshold(threshold=0.0)¶
OnnxOperatorMixin for VarianceThreshold
OnnxSklearnVotingClassifier¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnVotingClassifier(estimators, *, voting='hard', weights=None, n_jobs=None, flatten_transform=True, verbose=False)¶
OnnxOperatorMixin for VotingClassifier
Pipeline¶
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnPipeline(steps, *, memory=None, verbose=False)[source]¶
OnnxOperatorMixin for Pipeline
- onnx_converter()¶
Returns a converter for this model. If not overloaded, it fetches the converter mapped to the first scikit-learn parent it can find.
- onnx_parser()¶
Returns a parser for this model. If not overloaded, it calls the converter to guess the number of outputs. If it still fails, it fetches the parser mapped to the first scikit-learn parent it can find.
- onnx_shape_calculator()¶
Returns a shape calculator for this model. If not overloaded, it fetches the parser mapped to the first scikit-learn parent it can find.
- to_onnx(X=None, name=None, options=None, white_op=None, black_op=None, final_types=None, target_opset=None, verbose=0)¶
Converts the model in ONNX format. It calls method _to_onnx which must be overloaded.
- Parameters:
X – training data, at least one sample, it is used to guess the type of the input data.
name – name of the model, if None, it is replaced by the the class name.
options – specific options given to converters (see Converters with options)
white_op – white list of ONNX nodes allowed while converting a pipeline, if empty, all are allowed
black_op – black list of ONNX nodes allowed while converting a pipeline, if empty, none are blacklisted
final_types – a python list. Works the same way as initial_types but not mandatory, it is used to overwrites the type (if type is not None) and the name of every output.
target_opset – to overwrite self.op_version
verbose – displays information while converting
- to_onnx_operator(inputs=None, outputs=None, target_opset=None, options=None)¶
This function must be overloaded.
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnColumnTransformer(transformers, *, remainder='drop', sparse_threshold=0.3, n_jobs=None, transformer_weights=None, verbose=False, verbose_feature_names_out=True, force_int_remainder_cols=True)[source]¶
OnnxOperatorMixin for ColumnTransformer
- onnx_converter()¶
Returns a converter for this model. If not overloaded, it fetches the converter mapped to the first scikit-learn parent it can find.
- onnx_parser()¶
Returns a parser for this model. If not overloaded, it calls the converter to guess the number of outputs. If it still fails, it fetches the parser mapped to the first scikit-learn parent it can find.
- onnx_shape_calculator()¶
Returns a shape calculator for this model. If not overloaded, it fetches the parser mapped to the first scikit-learn parent it can find.
- to_onnx(X=None, name=None, options=None, white_op=None, black_op=None, final_types=None, target_opset=None, verbose=0)¶
Converts the model in ONNX format. It calls method _to_onnx which must be overloaded.
- Parameters:
X – training data, at least one sample, it is used to guess the type of the input data.
name – name of the model, if None, it is replaced by the the class name.
options – specific options given to converters (see Converters with options)
white_op – white list of ONNX nodes allowed while converting a pipeline, if empty, all are allowed
black_op – black list of ONNX nodes allowed while converting a pipeline, if empty, none are blacklisted
final_types – a python list. Works the same way as initial_types but not mandatory, it is used to overwrites the type (if type is not None) and the name of every output.
target_opset – to overwrite self.op_version
verbose – displays information while converting
- to_onnx_operator(inputs=None, outputs=None, target_opset=None, options=None)¶
This function must be overloaded.
- class skl2onnx.algebra.sklearn_ops.OnnxSklearnFeatureUnion(transformer_list, *, n_jobs=None, transformer_weights=None, verbose=False, verbose_feature_names_out=True)[source]¶
OnnxOperatorMixin for FeatureUnion
- onnx_converter()¶
Returns a converter for this model. If not overloaded, it fetches the converter mapped to the first scikit-learn parent it can find.
- onnx_parser()¶
Returns a parser for this model. If not overloaded, it calls the converter to guess the number of outputs. If it still fails, it fetches the parser mapped to the first scikit-learn parent it can find.
- onnx_shape_calculator()¶
Returns a shape calculator for this model. If not overloaded, it fetches the parser mapped to the first scikit-learn parent it can find.
- to_onnx(X=None, name=None, options=None, white_op=None, black_op=None, final_types=None, target_opset=None, verbose=0)¶
Converts the model in ONNX format. It calls method _to_onnx which must be overloaded.
- Parameters:
X – training data, at least one sample, it is used to guess the type of the input data.
name – name of the model, if None, it is replaced by the the class name.
options – specific options given to converters (see Converters with options)
white_op – white list of ONNX nodes allowed while converting a pipeline, if empty, all are allowed
black_op – black list of ONNX nodes allowed while converting a pipeline, if empty, none are blacklisted
final_types – a python list. Works the same way as initial_types but not mandatory, it is used to overwrites the type (if type is not None) and the name of every output.
target_opset – to overwrite self.op_version
verbose – displays information while converting
- to_onnx_operator(inputs=None, outputs=None, target_opset=None, options=None)¶
This function must be overloaded.
Available ONNX operators¶
skl2onnx maps every ONNX operators into a class easy to insert into a graph. These operators get dynamically added and the list depends on the installed ONNX package. The documentation for these operators can be found on github: ONNX Operators.md and ONNX-ML Operators. Associated to onnxruntime, the mapping makes it easier to easily check the output of the ONNX operators on any data as shown in example Play with ONNX operators.
OnnxAcosh_22¶
OnnxAdagrad_1¶
OnnxAffineGrid¶
- class skl2onnx.algebra.onnx_ops.OnnxAffineGrid(*args, **kwargs)¶
**Version**See AffineGrid.
OnnxAffineGrid_20¶
- class skl2onnx.algebra.onnx_ops.OnnxAffineGrid_20(*args, **kwargs)¶
**Version**See AffineGrid_20.
OnnxArgMax_1¶
OnnxArgMax_11¶
OnnxArgMax_12¶
OnnxArgMax_13¶
OnnxArgMin_1¶
OnnxArgMin_11¶
OnnxArgMin_12¶
OnnxArgMin_13¶
OnnxArrayFeatureExtractor¶
- class skl2onnx.algebra.onnx_ops.OnnxArrayFeatureExtractor(*args, **kwargs)¶
**Version**See ArrayFeatureExtractor.
OnnxArrayFeatureExtractor_1¶
- class skl2onnx.algebra.onnx_ops.OnnxArrayFeatureExtractor_1(*args, **kwargs)¶
**Version**See ArrayFeatureExtractor_1.
OnnxAsinh_22¶
OnnxAtanh_22¶
OnnxAveragePool¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool(*args, **kwargs)¶
**Version**See AveragePool.
OnnxAveragePool_1¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_1(*args, **kwargs)¶
**Version**See AveragePool_1.
OnnxAveragePool_10¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_10(*args, **kwargs)¶
**Version**See AveragePool_10.
OnnxAveragePool_11¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_11(*args, **kwargs)¶
**Version**See AveragePool_11.
OnnxAveragePool_19¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_19(*args, **kwargs)¶
**Version**See AveragePool_19.
OnnxAveragePool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_22(*args, **kwargs)¶
**Version**See AveragePool_22.
OnnxAveragePool_7¶
- class skl2onnx.algebra.onnx_ops.OnnxAveragePool_7(*args, **kwargs)¶
**Version**See AveragePool_7.
OnnxBatchNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization(*args, **kwargs)¶
**Version**See BatchNormalization.
OnnxBatchNormalization_1¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_1(*args, **kwargs)¶
**Version**See BatchNormalization_1.
OnnxBatchNormalization_14¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_14(*args, **kwargs)¶
**Version**See BatchNormalization_14.
OnnxBatchNormalization_15¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_15(*args, **kwargs)¶
**Version**See BatchNormalization_15.
OnnxBatchNormalization_6¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_6(*args, **kwargs)¶
**Version**See BatchNormalization_6.
OnnxBatchNormalization_7¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_7(*args, **kwargs)¶
**Version**See BatchNormalization_7.
OnnxBatchNormalization_9¶
- class skl2onnx.algebra.onnx_ops.OnnxBatchNormalization_9(*args, **kwargs)¶
**Version**See BatchNormalization_9.
OnnxBernoulli¶
OnnxBernoulli_15¶
- class skl2onnx.algebra.onnx_ops.OnnxBernoulli_15(*args, **kwargs)¶
**Version**See Bernoulli_15.
OnnxBernoulli_22¶
- class skl2onnx.algebra.onnx_ops.OnnxBernoulli_22(*args, **kwargs)¶
**Version**See Bernoulli_22.
OnnxBinarizer¶
OnnxBinarizer_1¶
- class skl2onnx.algebra.onnx_ops.OnnxBinarizer_1(*args, **kwargs)¶
**Version**See Binarizer_1.
OnnxBitShift¶
OnnxBitShift_11¶
- class skl2onnx.algebra.onnx_ops.OnnxBitShift_11(*args, **kwargs)¶
**Version**See BitShift_11.
OnnxBitwiseAnd¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseAnd(*args, **kwargs)¶
**Version**See BitwiseAnd.
OnnxBitwiseAnd_18¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseAnd_18(*args, **kwargs)¶
**Version**See BitwiseAnd_18.
OnnxBitwiseNot¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseNot(*args, **kwargs)¶
**Version**See BitwiseNot.
OnnxBitwiseNot_18¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseNot_18(*args, **kwargs)¶
**Version**See BitwiseNot_18.
OnnxBitwiseOr¶
OnnxBitwiseOr_18¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseOr_18(*args, **kwargs)¶
**Version**See BitwiseOr_18.
OnnxBitwiseXor¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseXor(*args, **kwargs)¶
**Version**See BitwiseXor.
OnnxBitwiseXor_18¶
- class skl2onnx.algebra.onnx_ops.OnnxBitwiseXor_18(*args, **kwargs)¶
**Version**See BitwiseXor_18.
OnnxBlackmanWindow¶
- class skl2onnx.algebra.onnx_ops.OnnxBlackmanWindow(*args, **kwargs)¶
**Version**See BlackmanWindow.
OnnxBlackmanWindow_17¶
- class skl2onnx.algebra.onnx_ops.OnnxBlackmanWindow_17(*args, **kwargs)¶
**Version**See BlackmanWindow_17.
OnnxCastLike¶
OnnxCastLike_15¶
- class skl2onnx.algebra.onnx_ops.OnnxCastLike_15(*args, **kwargs)¶
**Version**See CastLike_15.
OnnxCastLike_19¶
- class skl2onnx.algebra.onnx_ops.OnnxCastLike_19(*args, **kwargs)¶
**Version**See CastLike_19.
OnnxCastLike_21¶
- class skl2onnx.algebra.onnx_ops.OnnxCastLike_21(*args, **kwargs)¶
**Version**See CastLike_21.
OnnxCastMap_1¶
OnnxCategoryMapper¶
- class skl2onnx.algebra.onnx_ops.OnnxCategoryMapper(*args, **kwargs)¶
**Version**See CategoryMapper.
OnnxCategoryMapper_1¶
- class skl2onnx.algebra.onnx_ops.OnnxCategoryMapper_1(*args, **kwargs)¶
**Version**See CategoryMapper_1.
OnnxCenterCropPad¶
- class skl2onnx.algebra.onnx_ops.OnnxCenterCropPad(*args, **kwargs)¶
**Version**See CenterCropPad.
OnnxCenterCropPad_18¶
- class skl2onnx.algebra.onnx_ops.OnnxCenterCropPad_18(*args, **kwargs)¶
**Version**See CenterCropPad_18.
OnnxCol2Im_18¶
OnnxCompress¶
OnnxCompress_11¶
- class skl2onnx.algebra.onnx_ops.OnnxCompress_11(*args, **kwargs)¶
**Version**See Compress_11.
OnnxCompress_9¶
- class skl2onnx.algebra.onnx_ops.OnnxCompress_9(*args, **kwargs)¶
**Version**See Compress_9.
OnnxConcatFromSequence¶
- class skl2onnx.algebra.onnx_ops.OnnxConcatFromSequence(*args, **kwargs)¶
**Version**See ConcatFromSequence.
OnnxConcatFromSequence_11¶
- class skl2onnx.algebra.onnx_ops.OnnxConcatFromSequence_11(*args, **kwargs)¶
**Version**See ConcatFromSequence_11.
OnnxConcat_1¶
OnnxConcat_11¶
OnnxConcat_13¶
OnnxConcat_4¶
OnnxConstant¶
OnnxConstantOfShape¶
- class skl2onnx.algebra.onnx_ops.OnnxConstantOfShape(*args, **kwargs)¶
**Version**See ConstantOfShape.
OnnxConstantOfShape_20¶
- class skl2onnx.algebra.onnx_ops.OnnxConstantOfShape_20(*args, **kwargs)¶
**Version**See ConstantOfShape_20.
OnnxConstantOfShape_21¶
- class skl2onnx.algebra.onnx_ops.OnnxConstantOfShape_21(*args, **kwargs)¶
**Version**See ConstantOfShape_21.
OnnxConstantOfShape_9¶
- class skl2onnx.algebra.onnx_ops.OnnxConstantOfShape_9(*args, **kwargs)¶
**Version**See ConstantOfShape_9.
OnnxConstant_1¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_1(*args, **kwargs)¶
**Version**See Constant_1.
OnnxConstant_11¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_11(*args, **kwargs)¶
**Version**See Constant_11.
OnnxConstant_12¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_12(*args, **kwargs)¶
**Version**See Constant_12.
OnnxConstant_13¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_13(*args, **kwargs)¶
**Version**See Constant_13.
OnnxConstant_19¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_19(*args, **kwargs)¶
**Version**See Constant_19.
OnnxConstant_21¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_21(*args, **kwargs)¶
**Version**See Constant_21.
OnnxConstant_9¶
- class skl2onnx.algebra.onnx_ops.OnnxConstant_9(*args, **kwargs)¶
**Version**See Constant_9.
OnnxConvInteger¶
- class skl2onnx.algebra.onnx_ops.OnnxConvInteger(*args, **kwargs)¶
**Version**See ConvInteger.
OnnxConvInteger_10¶
- class skl2onnx.algebra.onnx_ops.OnnxConvInteger_10(*args, **kwargs)¶
**Version**See ConvInteger_10.
OnnxConvTranspose¶
- class skl2onnx.algebra.onnx_ops.OnnxConvTranspose(*args, **kwargs)¶
**Version**See ConvTranspose.
OnnxConvTranspose_1¶
- class skl2onnx.algebra.onnx_ops.OnnxConvTranspose_1(*args, **kwargs)¶
**Version**See ConvTranspose_1.
OnnxConvTranspose_11¶
- class skl2onnx.algebra.onnx_ops.OnnxConvTranspose_11(*args, **kwargs)¶
**Version**See ConvTranspose_11.
OnnxConvTranspose_22¶
- class skl2onnx.algebra.onnx_ops.OnnxConvTranspose_22(*args, **kwargs)¶
**Version**See ConvTranspose_22.
OnnxCumSum_11¶
OnnxCumSum_14¶
OnnxDeformConv¶
- class skl2onnx.algebra.onnx_ops.OnnxDeformConv(*args, **kwargs)¶
**Version**See DeformConv.
OnnxDeformConv_19¶
- class skl2onnx.algebra.onnx_ops.OnnxDeformConv_19(*args, **kwargs)¶
**Version**See DeformConv_19.
OnnxDeformConv_22¶
- class skl2onnx.algebra.onnx_ops.OnnxDeformConv_22(*args, **kwargs)¶
**Version**See DeformConv_22.
OnnxDepthToSpace¶
- class skl2onnx.algebra.onnx_ops.OnnxDepthToSpace(*args, **kwargs)¶
**Version**See DepthToSpace.
OnnxDepthToSpace_1¶
- class skl2onnx.algebra.onnx_ops.OnnxDepthToSpace_1(*args, **kwargs)¶
**Version**See DepthToSpace_1.
OnnxDepthToSpace_11¶
- class skl2onnx.algebra.onnx_ops.OnnxDepthToSpace_11(*args, **kwargs)¶
**Version**See DepthToSpace_11.
OnnxDepthToSpace_13¶
- class skl2onnx.algebra.onnx_ops.OnnxDepthToSpace_13(*args, **kwargs)¶
**Version**See DepthToSpace_13.
OnnxDequantizeLinear¶
- class skl2onnx.algebra.onnx_ops.OnnxDequantizeLinear(*args, **kwargs)¶
**Version**See DequantizeLinear.
OnnxDequantizeLinear_10¶
- class skl2onnx.algebra.onnx_ops.OnnxDequantizeLinear_10(*args, **kwargs)¶
**Version**See DequantizeLinear_10.
OnnxDequantizeLinear_13¶
- class skl2onnx.algebra.onnx_ops.OnnxDequantizeLinear_13(*args, **kwargs)¶
**Version**See DequantizeLinear_13.
OnnxDequantizeLinear_19¶
- class skl2onnx.algebra.onnx_ops.OnnxDequantizeLinear_19(*args, **kwargs)¶
**Version**See DequantizeLinear_19.
OnnxDequantizeLinear_21¶
- class skl2onnx.algebra.onnx_ops.OnnxDequantizeLinear_21(*args, **kwargs)¶
**Version**See DequantizeLinear_21.
OnnxDictVectorizer¶
- class skl2onnx.algebra.onnx_ops.OnnxDictVectorizer(*args, **kwargs)¶
**Version**See DictVectorizer.
OnnxDictVectorizer_1¶
- class skl2onnx.algebra.onnx_ops.OnnxDictVectorizer_1(*args, **kwargs)¶
**Version**See DictVectorizer_1.
OnnxDropout_1¶
OnnxDropout_10¶
- class skl2onnx.algebra.onnx_ops.OnnxDropout_10(*args, **kwargs)¶
**Version**See Dropout_10.
OnnxDropout_12¶
- class skl2onnx.algebra.onnx_ops.OnnxDropout_12(*args, **kwargs)¶
**Version**See Dropout_12.
OnnxDropout_13¶
- class skl2onnx.algebra.onnx_ops.OnnxDropout_13(*args, **kwargs)¶
**Version**See Dropout_13.
OnnxDropout_22¶
- class skl2onnx.algebra.onnx_ops.OnnxDropout_22(*args, **kwargs)¶
**Version**See Dropout_22.
OnnxDropout_6¶
OnnxDropout_7¶
OnnxDynamicQuantizeLinear¶
- class skl2onnx.algebra.onnx_ops.OnnxDynamicQuantizeLinear(*args, **kwargs)¶
**Version**See DynamicQuantizeLinear.
OnnxDynamicQuantizeLinear_11¶
- class skl2onnx.algebra.onnx_ops.OnnxDynamicQuantizeLinear_11(*args, **kwargs)¶
**Version**See DynamicQuantizeLinear_11.
OnnxEinsum_12¶
OnnxEqual_11¶
OnnxEqual_13¶
OnnxEqual_19¶
OnnxExpand_13¶
OnnxExpand_8¶
OnnxEyeLike_22¶
- class skl2onnx.algebra.onnx_ops.OnnxEyeLike_22(*args, **kwargs)¶
**Version**See EyeLike_22.
OnnxEyeLike_9¶
OnnxFeatureVectorizer¶
- class skl2onnx.algebra.onnx_ops.OnnxFeatureVectorizer(*args, **kwargs)¶
**Version**See FeatureVectorizer.
OnnxFeatureVectorizer_1¶
- class skl2onnx.algebra.onnx_ops.OnnxFeatureVectorizer_1(*args, **kwargs)¶
**Version**See FeatureVectorizer_1.
OnnxFlatten_1¶
OnnxFlatten_11¶
- class skl2onnx.algebra.onnx_ops.OnnxFlatten_11(*args, **kwargs)¶
**Version**See Flatten_11.
OnnxFlatten_13¶
- class skl2onnx.algebra.onnx_ops.OnnxFlatten_13(*args, **kwargs)¶
**Version**See Flatten_13.
OnnxFlatten_21¶
- class skl2onnx.algebra.onnx_ops.OnnxFlatten_21(*args, **kwargs)¶
**Version**See Flatten_21.
OnnxFlatten_9¶
OnnxFloor_13¶
OnnxGatherElements¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherElements(*args, **kwargs)¶
**Version**See GatherElements.
OnnxGatherElements_11¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherElements_11(*args, **kwargs)¶
**Version**See GatherElements_11.
OnnxGatherElements_13¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherElements_13(*args, **kwargs)¶
**Version**See GatherElements_13.
OnnxGatherND¶
OnnxGatherND_11¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherND_11(*args, **kwargs)¶
**Version**See GatherND_11.
OnnxGatherND_12¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherND_12(*args, **kwargs)¶
**Version**See GatherND_12.
OnnxGatherND_13¶
- class skl2onnx.algebra.onnx_ops.OnnxGatherND_13(*args, **kwargs)¶
**Version**See GatherND_13.
OnnxGather_1¶
OnnxGather_11¶
OnnxGather_13¶
OnnxGlobalAveragePool¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalAveragePool(*args, **kwargs)¶
**Version**See GlobalAveragePool.
OnnxGlobalAveragePool_1¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalAveragePool_1(*args, **kwargs)¶
**Version**See GlobalAveragePool_1.
OnnxGlobalAveragePool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalAveragePool_22(*args, **kwargs)¶
**Version**See GlobalAveragePool_22.
OnnxGlobalLpPool¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalLpPool(*args, **kwargs)¶
**Version**See GlobalLpPool.
OnnxGlobalLpPool_1¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalLpPool_1(*args, **kwargs)¶
**Version**See GlobalLpPool_1.
OnnxGlobalLpPool_2¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalLpPool_2(*args, **kwargs)¶
**Version**See GlobalLpPool_2.
OnnxGlobalLpPool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalLpPool_22(*args, **kwargs)¶
**Version**See GlobalLpPool_22.
OnnxGlobalMaxPool¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalMaxPool(*args, **kwargs)¶
**Version**See GlobalMaxPool.
OnnxGlobalMaxPool_1¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalMaxPool_1(*args, **kwargs)¶
**Version**See GlobalMaxPool_1.
OnnxGlobalMaxPool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxGlobalMaxPool_22(*args, **kwargs)¶
**Version**See GlobalMaxPool_22.
OnnxGradient¶
OnnxGradient_1¶
- class skl2onnx.algebra.onnx_ops.OnnxGradient_1(*args, **kwargs)¶
**Version**See Gradient_1.
OnnxGreaterOrEqual¶
- class skl2onnx.algebra.onnx_ops.OnnxGreaterOrEqual(*args, **kwargs)¶
**Version**See GreaterOrEqual.
OnnxGreaterOrEqual_12¶
- class skl2onnx.algebra.onnx_ops.OnnxGreaterOrEqual_12(*args, **kwargs)¶
**Version**See GreaterOrEqual_12.
OnnxGreaterOrEqual_16¶
- class skl2onnx.algebra.onnx_ops.OnnxGreaterOrEqual_16(*args, **kwargs)¶
**Version**See GreaterOrEqual_16.
OnnxGreater_1¶
OnnxGreater_13¶
- class skl2onnx.algebra.onnx_ops.OnnxGreater_13(*args, **kwargs)¶
**Version**See Greater_13.
OnnxGreater_7¶
OnnxGreater_9¶
OnnxGridSample¶
- class skl2onnx.algebra.onnx_ops.OnnxGridSample(*args, **kwargs)¶
**Version**See GridSample.
OnnxGridSample_16¶
- class skl2onnx.algebra.onnx_ops.OnnxGridSample_16(*args, **kwargs)¶
**Version**See GridSample_16.
OnnxGridSample_20¶
- class skl2onnx.algebra.onnx_ops.OnnxGridSample_20(*args, **kwargs)¶
**Version**See GridSample_20.
OnnxGridSample_22¶
- class skl2onnx.algebra.onnx_ops.OnnxGridSample_22(*args, **kwargs)¶
**Version**See GridSample_22.
OnnxGroupNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxGroupNormalization(*args, **kwargs)¶
**Version**See GroupNormalization.
OnnxGroupNormalization_18¶
- class skl2onnx.algebra.onnx_ops.OnnxGroupNormalization_18(*args, **kwargs)¶
**Version**See GroupNormalization_18.
OnnxGroupNormalization_21¶
- class skl2onnx.algebra.onnx_ops.OnnxGroupNormalization_21(*args, **kwargs)¶
**Version**See GroupNormalization_21.
OnnxHammingWindow¶
- class skl2onnx.algebra.onnx_ops.OnnxHammingWindow(*args, **kwargs)¶
**Version**See HammingWindow.
OnnxHammingWindow_17¶
- class skl2onnx.algebra.onnx_ops.OnnxHammingWindow_17(*args, **kwargs)¶
**Version**See HammingWindow_17.
OnnxHannWindow¶
- class skl2onnx.algebra.onnx_ops.OnnxHannWindow(*args, **kwargs)¶
**Version**See HannWindow.
OnnxHannWindow_17¶
- class skl2onnx.algebra.onnx_ops.OnnxHannWindow_17(*args, **kwargs)¶
**Version**See HannWindow_17.
OnnxHardSigmoid¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSigmoid(*args, **kwargs)¶
**Version**See HardSigmoid.
OnnxHardSigmoid_1¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSigmoid_1(*args, **kwargs)¶
**Version**See HardSigmoid_1.
OnnxHardSigmoid_22¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSigmoid_22(*args, **kwargs)¶
**Version**See HardSigmoid_22.
OnnxHardSigmoid_6¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSigmoid_6(*args, **kwargs)¶
**Version**See HardSigmoid_6.
OnnxHardSwish¶
OnnxHardSwish_14¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSwish_14(*args, **kwargs)¶
**Version**See HardSwish_14.
OnnxHardSwish_22¶
- class skl2onnx.algebra.onnx_ops.OnnxHardSwish_22(*args, **kwargs)¶
**Version**See HardSwish_22.
OnnxHardmax_1¶
OnnxHardmax_11¶
- class skl2onnx.algebra.onnx_ops.OnnxHardmax_11(*args, **kwargs)¶
**Version**See Hardmax_11.
OnnxHardmax_13¶
- class skl2onnx.algebra.onnx_ops.OnnxHardmax_13(*args, **kwargs)¶
**Version**See Hardmax_13.
OnnxIdentity¶
OnnxIdentity_1¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_1(*args, **kwargs)¶
**Version**See Identity_1.
OnnxIdentity_13¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_13(*args, **kwargs)¶
**Version**See Identity_13.
OnnxIdentity_14¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_14(*args, **kwargs)¶
**Version**See Identity_14.
OnnxIdentity_16¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_16(*args, **kwargs)¶
**Version**See Identity_16.
OnnxIdentity_19¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_19(*args, **kwargs)¶
**Version**See Identity_19.
OnnxIdentity_21¶
- class skl2onnx.algebra.onnx_ops.OnnxIdentity_21(*args, **kwargs)¶
**Version**See Identity_21.
OnnxImageDecoder¶
- class skl2onnx.algebra.onnx_ops.OnnxImageDecoder(*args, **kwargs)¶
**Version**See ImageDecoder.
OnnxImageDecoder_20¶
- class skl2onnx.algebra.onnx_ops.OnnxImageDecoder_20(*args, **kwargs)¶
**Version**See ImageDecoder_20.
OnnxImputer_1¶
OnnxInstanceNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxInstanceNormalization(*args, **kwargs)¶
**Version**See InstanceNormalization.
OnnxInstanceNormalization_1¶
- class skl2onnx.algebra.onnx_ops.OnnxInstanceNormalization_1(*args, **kwargs)¶
**Version**See InstanceNormalization_1.
OnnxInstanceNormalization_22¶
- class skl2onnx.algebra.onnx_ops.OnnxInstanceNormalization_22(*args, **kwargs)¶
**Version**See InstanceNormalization_22.
OnnxInstanceNormalization_6¶
- class skl2onnx.algebra.onnx_ops.OnnxInstanceNormalization_6(*args, **kwargs)¶
**Version**See InstanceNormalization_6.
OnnxIsInf_10¶
OnnxIsInf_20¶
OnnxIsNaN_13¶
OnnxIsNaN_20¶
OnnxLabelEncoder¶
- class skl2onnx.algebra.onnx_ops.OnnxLabelEncoder(*args, **kwargs)¶
**Version**See LabelEncoder.
OnnxLabelEncoder_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLabelEncoder_1(*args, **kwargs)¶
**Version**See LabelEncoder_1.
OnnxLabelEncoder_2¶
- class skl2onnx.algebra.onnx_ops.OnnxLabelEncoder_2(*args, **kwargs)¶
**Version**See LabelEncoder_2.
OnnxLabelEncoder_4¶
- class skl2onnx.algebra.onnx_ops.OnnxLabelEncoder_4(*args, **kwargs)¶
**Version**See LabelEncoder_4.
OnnxLayerNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxLayerNormalization(*args, **kwargs)¶
**Version**See LayerNormalization.
OnnxLayerNormalization_17¶
- class skl2onnx.algebra.onnx_ops.OnnxLayerNormalization_17(*args, **kwargs)¶
**Version**See LayerNormalization_17.
OnnxLeakyRelu¶
OnnxLeakyRelu_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLeakyRelu_1(*args, **kwargs)¶
**Version**See LeakyRelu_1.
OnnxLeakyRelu_16¶
- class skl2onnx.algebra.onnx_ops.OnnxLeakyRelu_16(*args, **kwargs)¶
**Version**See LeakyRelu_16.
OnnxLeakyRelu_6¶
- class skl2onnx.algebra.onnx_ops.OnnxLeakyRelu_6(*args, **kwargs)¶
**Version**See LeakyRelu_6.
OnnxLessOrEqual¶
- class skl2onnx.algebra.onnx_ops.OnnxLessOrEqual(*args, **kwargs)¶
**Version**See LessOrEqual.
OnnxLessOrEqual_12¶
- class skl2onnx.algebra.onnx_ops.OnnxLessOrEqual_12(*args, **kwargs)¶
**Version**See LessOrEqual_12.
OnnxLessOrEqual_16¶
- class skl2onnx.algebra.onnx_ops.OnnxLessOrEqual_16(*args, **kwargs)¶
**Version**See LessOrEqual_16.
OnnxLinearClassifier¶
- class skl2onnx.algebra.onnx_ops.OnnxLinearClassifier(*args, **kwargs)¶
**Version**See LinearClassifier.
OnnxLinearClassifier_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLinearClassifier_1(*args, **kwargs)¶
**Version**See LinearClassifier_1.
OnnxLinearRegressor¶
- class skl2onnx.algebra.onnx_ops.OnnxLinearRegressor(*args, **kwargs)¶
**Version**See LinearRegressor.
OnnxLinearRegressor_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLinearRegressor_1(*args, **kwargs)¶
**Version**See LinearRegressor_1.
OnnxLogSoftmax¶
- class skl2onnx.algebra.onnx_ops.OnnxLogSoftmax(*args, **kwargs)¶
**Version**See LogSoftmax.
OnnxLogSoftmax_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLogSoftmax_1(*args, **kwargs)¶
**Version**See LogSoftmax_1.
OnnxLogSoftmax_11¶
- class skl2onnx.algebra.onnx_ops.OnnxLogSoftmax_11(*args, **kwargs)¶
**Version**See LogSoftmax_11.
OnnxLogSoftmax_13¶
- class skl2onnx.algebra.onnx_ops.OnnxLogSoftmax_13(*args, **kwargs)¶
**Version**See LogSoftmax_13.
OnnxLpNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxLpNormalization(*args, **kwargs)¶
**Version**See LpNormalization.
OnnxLpNormalization_1¶
- class skl2onnx.algebra.onnx_ops.OnnxLpNormalization_1(*args, **kwargs)¶
**Version**See LpNormalization_1.
OnnxLpNormalization_22¶
- class skl2onnx.algebra.onnx_ops.OnnxLpNormalization_22(*args, **kwargs)¶
**Version**See LpNormalization_22.
OnnxLpPool_1¶
OnnxLpPool_11¶
OnnxLpPool_18¶
OnnxLpPool_2¶
OnnxLpPool_22¶
OnnxMatMulInteger¶
- class skl2onnx.algebra.onnx_ops.OnnxMatMulInteger(*args, **kwargs)¶
**Version**See MatMulInteger.
OnnxMatMulInteger_10¶
- class skl2onnx.algebra.onnx_ops.OnnxMatMulInteger_10(*args, **kwargs)¶
**Version**See MatMulInteger_10.
OnnxMatMul_1¶
OnnxMatMul_13¶
OnnxMatMul_9¶
OnnxMaxPool_1¶
OnnxMaxPool_10¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxPool_10(*args, **kwargs)¶
**Version**See MaxPool_10.
OnnxMaxPool_11¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxPool_11(*args, **kwargs)¶
**Version**See MaxPool_11.
OnnxMaxPool_12¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxPool_12(*args, **kwargs)¶
**Version**See MaxPool_12.
OnnxMaxPool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxPool_22(*args, **kwargs)¶
**Version**See MaxPool_22.
OnnxMaxPool_8¶
OnnxMaxRoiPool¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxRoiPool(*args, **kwargs)¶
**Version**See MaxRoiPool.
OnnxMaxRoiPool_1¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxRoiPool_1(*args, **kwargs)¶
**Version**See MaxRoiPool_1.
OnnxMaxRoiPool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxRoiPool_22(*args, **kwargs)¶
**Version**See MaxRoiPool_22.
OnnxMaxUnpool¶
OnnxMaxUnpool_11¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxUnpool_11(*args, **kwargs)¶
**Version**See MaxUnpool_11.
OnnxMaxUnpool_22¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxUnpool_22(*args, **kwargs)¶
**Version**See MaxUnpool_22.
OnnxMaxUnpool_9¶
- class skl2onnx.algebra.onnx_ops.OnnxMaxUnpool_9(*args, **kwargs)¶
**Version**See MaxUnpool_9.
OnnxMeanVarianceNormalization¶
- class skl2onnx.algebra.onnx_ops.OnnxMeanVarianceNormalization(*args, **kwargs)¶
**Version**See MeanVarianceNormalization.
OnnxMeanVarianceNormalization_13¶
- class skl2onnx.algebra.onnx_ops.OnnxMeanVarianceNormalization_13(*args, **kwargs)¶
**Version**See MeanVarianceNormalization_13.
OnnxMeanVarianceNormalization_9¶
- class skl2onnx.algebra.onnx_ops.OnnxMeanVarianceNormalization_9(*args, **kwargs)¶
**Version**See MeanVarianceNormalization_9.
OnnxMelWeightMatrix¶
- class skl2onnx.algebra.onnx_ops.OnnxMelWeightMatrix(*args, **kwargs)¶
**Version**See MelWeightMatrix.
OnnxMelWeightMatrix_17¶
- class skl2onnx.algebra.onnx_ops.OnnxMelWeightMatrix_17(*args, **kwargs)¶
**Version**See MelWeightMatrix_17.
OnnxMomentum¶
OnnxMomentum_1¶
- class skl2onnx.algebra.onnx_ops.OnnxMomentum_1(*args, **kwargs)¶
**Version**See Momentum_1.
OnnxMultinomial¶
- class skl2onnx.algebra.onnx_ops.OnnxMultinomial(*args, **kwargs)¶
**Version**See Multinomial.
OnnxMultinomial_22¶
- class skl2onnx.algebra.onnx_ops.OnnxMultinomial_22(*args, **kwargs)¶
**Version**See Multinomial_22.
OnnxMultinomial_7¶
- class skl2onnx.algebra.onnx_ops.OnnxMultinomial_7(*args, **kwargs)¶
**Version**See Multinomial_7.
OnnxNegativeLogLikelihoodLoss¶
- class skl2onnx.algebra.onnx_ops.OnnxNegativeLogLikelihoodLoss(*args, **kwargs)¶
**Version**See NegativeLogLikelihoodLoss.
OnnxNegativeLogLikelihoodLoss_12¶
- class skl2onnx.algebra.onnx_ops.OnnxNegativeLogLikelihoodLoss_12(*args, **kwargs)¶
**Version**See NegativeLogLikelihoodLoss_12.
OnnxNegativeLogLikelihoodLoss_13¶
- class skl2onnx.algebra.onnx_ops.OnnxNegativeLogLikelihoodLoss_13(*args, **kwargs)¶
**Version**See NegativeLogLikelihoodLoss_13.
OnnxNegativeLogLikelihoodLoss_22¶
- class skl2onnx.algebra.onnx_ops.OnnxNegativeLogLikelihoodLoss_22(*args, **kwargs)¶
**Version**See NegativeLogLikelihoodLoss_22.
OnnxNonMaxSuppression¶
- class skl2onnx.algebra.onnx_ops.OnnxNonMaxSuppression(*args, **kwargs)¶
**Version**See NonMaxSuppression.
OnnxNonMaxSuppression_10¶
- class skl2onnx.algebra.onnx_ops.OnnxNonMaxSuppression_10(*args, **kwargs)¶
**Version**See NonMaxSuppression_10.
OnnxNonMaxSuppression_11¶
- class skl2onnx.algebra.onnx_ops.OnnxNonMaxSuppression_11(*args, **kwargs)¶
**Version**See NonMaxSuppression_11.
OnnxNonZero_13¶
- class skl2onnx.algebra.onnx_ops.OnnxNonZero_13(*args, **kwargs)¶
**Version**See NonZero_13.
OnnxNonZero_9¶
OnnxNormalizer¶
- class skl2onnx.algebra.onnx_ops.OnnxNormalizer(*args, **kwargs)¶
**Version**See Normalizer.
OnnxNormalizer_1¶
- class skl2onnx.algebra.onnx_ops.OnnxNormalizer_1(*args, **kwargs)¶
**Version**See Normalizer_1.
OnnxOneHotEncoder¶
- class skl2onnx.algebra.onnx_ops.OnnxOneHotEncoder(*args, **kwargs)¶
**Version**See OneHotEncoder.
OnnxOneHotEncoder_1¶
- class skl2onnx.algebra.onnx_ops.OnnxOneHotEncoder_1(*args, **kwargs)¶
**Version**See OneHotEncoder_1.
OnnxOneHot_11¶
OnnxOneHot_9¶
OnnxOptional¶
OnnxOptionalGetElement¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalGetElement(*args, **kwargs)¶
**Version**See OptionalGetElement.
OnnxOptionalGetElement_15¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalGetElement_15(*args, **kwargs)¶
**Version**See OptionalGetElement_15.
OnnxOptionalGetElement_18¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalGetElement_18(*args, **kwargs)¶
**Version**See OptionalGetElement_18.
OnnxOptionalHasElement¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalHasElement(*args, **kwargs)¶
**Version**See OptionalHasElement.
OnnxOptionalHasElement_15¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalHasElement_15(*args, **kwargs)¶
**Version**See OptionalHasElement_15.
OnnxOptionalHasElement_18¶
- class skl2onnx.algebra.onnx_ops.OnnxOptionalHasElement_18(*args, **kwargs)¶
**Version**See OptionalHasElement_18.
OnnxOptional_15¶
- class skl2onnx.algebra.onnx_ops.OnnxOptional_15(*args, **kwargs)¶
**Version**See Optional_15.
OnnxPRelu_16¶
OnnxQLinearConv¶
- class skl2onnx.algebra.onnx_ops.OnnxQLinearConv(*args, **kwargs)¶
**Version**See QLinearConv.
OnnxQLinearConv_10¶
- class skl2onnx.algebra.onnx_ops.OnnxQLinearConv_10(*args, **kwargs)¶
**Version**See QLinearConv_10.
OnnxQLinearMatMul¶
- class skl2onnx.algebra.onnx_ops.OnnxQLinearMatMul(*args, **kwargs)¶
**Version**See QLinearMatMul.
OnnxQLinearMatMul_10¶
- class skl2onnx.algebra.onnx_ops.OnnxQLinearMatMul_10(*args, **kwargs)¶
**Version**See QLinearMatMul_10.
OnnxQLinearMatMul_21¶
- class skl2onnx.algebra.onnx_ops.OnnxQLinearMatMul_21(*args, **kwargs)¶
**Version**See QLinearMatMul_21.
OnnxQuantizeLinear¶
- class skl2onnx.algebra.onnx_ops.OnnxQuantizeLinear(*args, **kwargs)¶
**Version**See QuantizeLinear.
OnnxQuantizeLinear_10¶
- class skl2onnx.algebra.onnx_ops.OnnxQuantizeLinear_10(*args, **kwargs)¶
**Version**See QuantizeLinear_10.
OnnxQuantizeLinear_13¶
- class skl2onnx.algebra.onnx_ops.OnnxQuantizeLinear_13(*args, **kwargs)¶
**Version**See QuantizeLinear_13.
OnnxQuantizeLinear_19¶
- class skl2onnx.algebra.onnx_ops.OnnxQuantizeLinear_19(*args, **kwargs)¶
**Version**See QuantizeLinear_19.
OnnxQuantizeLinear_21¶
- class skl2onnx.algebra.onnx_ops.OnnxQuantizeLinear_21(*args, **kwargs)¶
**Version**See QuantizeLinear_21.
OnnxRandomNormal¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormal(*args, **kwargs)¶
**Version**See RandomNormal.
OnnxRandomNormalLike¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormalLike(*args, **kwargs)¶
**Version**See RandomNormalLike.
OnnxRandomNormalLike_1¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormalLike_1(*args, **kwargs)¶
**Version**See RandomNormalLike_1.
OnnxRandomNormalLike_22¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormalLike_22(*args, **kwargs)¶
**Version**See RandomNormalLike_22.
OnnxRandomNormal_1¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormal_1(*args, **kwargs)¶
**Version**See RandomNormal_1.
OnnxRandomNormal_22¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomNormal_22(*args, **kwargs)¶
**Version**See RandomNormal_22.
OnnxRandomUniform¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniform(*args, **kwargs)¶
**Version**See RandomUniform.
OnnxRandomUniformLike¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniformLike(*args, **kwargs)¶
**Version**See RandomUniformLike.
OnnxRandomUniformLike_1¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniformLike_1(*args, **kwargs)¶
**Version**See RandomUniformLike_1.
OnnxRandomUniformLike_22¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniformLike_22(*args, **kwargs)¶
**Version**See RandomUniformLike_22.
OnnxRandomUniform_1¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniform_1(*args, **kwargs)¶
**Version**See RandomUniform_1.
OnnxRandomUniform_22¶
- class skl2onnx.algebra.onnx_ops.OnnxRandomUniform_22(*args, **kwargs)¶
**Version**See RandomUniform_22.
OnnxRange_11¶
OnnxReciprocal¶
- class skl2onnx.algebra.onnx_ops.OnnxReciprocal(*args, **kwargs)¶
**Version**See Reciprocal.
OnnxReciprocal_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReciprocal_1(*args, **kwargs)¶
**Version**See Reciprocal_1.
OnnxReciprocal_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReciprocal_13(*args, **kwargs)¶
**Version**See Reciprocal_13.
OnnxReciprocal_6¶
- class skl2onnx.algebra.onnx_ops.OnnxReciprocal_6(*args, **kwargs)¶
**Version**See Reciprocal_6.
OnnxReduceL1¶
OnnxReduceL1_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL1_1(*args, **kwargs)¶
**Version**See ReduceL1_1.
OnnxReduceL1_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL1_11(*args, **kwargs)¶
**Version**See ReduceL1_11.
OnnxReduceL1_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL1_13(*args, **kwargs)¶
**Version**See ReduceL1_13.
OnnxReduceL1_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL1_18(*args, **kwargs)¶
**Version**See ReduceL1_18.
OnnxReduceL2¶
OnnxReduceL2_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL2_1(*args, **kwargs)¶
**Version**See ReduceL2_1.
OnnxReduceL2_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL2_11(*args, **kwargs)¶
**Version**See ReduceL2_11.
OnnxReduceL2_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL2_13(*args, **kwargs)¶
**Version**See ReduceL2_13.
OnnxReduceL2_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceL2_18(*args, **kwargs)¶
**Version**See ReduceL2_18.
OnnxReduceLogSum¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSum(*args, **kwargs)¶
**Version**See ReduceLogSum.
OnnxReduceLogSumExp¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSumExp(*args, **kwargs)¶
**Version**See ReduceLogSumExp.
OnnxReduceLogSumExp_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSumExp_1(*args, **kwargs)¶
**Version**See ReduceLogSumExp_1.
OnnxReduceLogSumExp_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSumExp_11(*args, **kwargs)¶
**Version**See ReduceLogSumExp_11.
OnnxReduceLogSumExp_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSumExp_13(*args, **kwargs)¶
**Version**See ReduceLogSumExp_13.
OnnxReduceLogSumExp_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSumExp_18(*args, **kwargs)¶
**Version**See ReduceLogSumExp_18.
OnnxReduceLogSum_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSum_1(*args, **kwargs)¶
**Version**See ReduceLogSum_1.
OnnxReduceLogSum_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSum_11(*args, **kwargs)¶
**Version**See ReduceLogSum_11.
OnnxReduceLogSum_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSum_13(*args, **kwargs)¶
**Version**See ReduceLogSum_13.
OnnxReduceLogSum_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceLogSum_18(*args, **kwargs)¶
**Version**See ReduceLogSum_18.
OnnxReduceMax¶
OnnxReduceMax_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_1(*args, **kwargs)¶
**Version**See ReduceMax_1.
OnnxReduceMax_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_11(*args, **kwargs)¶
**Version**See ReduceMax_11.
OnnxReduceMax_12¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_12(*args, **kwargs)¶
**Version**See ReduceMax_12.
OnnxReduceMax_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_13(*args, **kwargs)¶
**Version**See ReduceMax_13.
OnnxReduceMax_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_18(*args, **kwargs)¶
**Version**See ReduceMax_18.
OnnxReduceMax_20¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMax_20(*args, **kwargs)¶
**Version**See ReduceMax_20.
OnnxReduceMean¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMean(*args, **kwargs)¶
**Version**See ReduceMean.
OnnxReduceMean_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMean_1(*args, **kwargs)¶
**Version**See ReduceMean_1.
OnnxReduceMean_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMean_11(*args, **kwargs)¶
**Version**See ReduceMean_11.
OnnxReduceMean_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMean_13(*args, **kwargs)¶
**Version**See ReduceMean_13.
OnnxReduceMean_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMean_18(*args, **kwargs)¶
**Version**See ReduceMean_18.
OnnxReduceMin¶
OnnxReduceMin_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_1(*args, **kwargs)¶
**Version**See ReduceMin_1.
OnnxReduceMin_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_11(*args, **kwargs)¶
**Version**See ReduceMin_11.
OnnxReduceMin_12¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_12(*args, **kwargs)¶
**Version**See ReduceMin_12.
OnnxReduceMin_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_13(*args, **kwargs)¶
**Version**See ReduceMin_13.
OnnxReduceMin_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_18(*args, **kwargs)¶
**Version**See ReduceMin_18.
OnnxReduceMin_20¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceMin_20(*args, **kwargs)¶
**Version**See ReduceMin_20.
OnnxReduceProd¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceProd(*args, **kwargs)¶
**Version**See ReduceProd.
OnnxReduceProd_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceProd_1(*args, **kwargs)¶
**Version**See ReduceProd_1.
OnnxReduceProd_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceProd_11(*args, **kwargs)¶
**Version**See ReduceProd_11.
OnnxReduceProd_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceProd_13(*args, **kwargs)¶
**Version**See ReduceProd_13.
OnnxReduceProd_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceProd_18(*args, **kwargs)¶
**Version**See ReduceProd_18.
OnnxReduceSum¶
OnnxReduceSumSquare¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSumSquare(*args, **kwargs)¶
**Version**See ReduceSumSquare.
OnnxReduceSumSquare_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSumSquare_1(*args, **kwargs)¶
**Version**See ReduceSumSquare_1.
OnnxReduceSumSquare_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSumSquare_11(*args, **kwargs)¶
**Version**See ReduceSumSquare_11.
OnnxReduceSumSquare_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSumSquare_13(*args, **kwargs)¶
**Version**See ReduceSumSquare_13.
OnnxReduceSumSquare_18¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSumSquare_18(*args, **kwargs)¶
**Version**See ReduceSumSquare_18.
OnnxReduceSum_1¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSum_1(*args, **kwargs)¶
**Version**See ReduceSum_1.
OnnxReduceSum_11¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSum_11(*args, **kwargs)¶
**Version**See ReduceSum_11.
OnnxReduceSum_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReduceSum_13(*args, **kwargs)¶
**Version**See ReduceSum_13.
OnnxRegexFullMatch¶
- class skl2onnx.algebra.onnx_ops.OnnxRegexFullMatch(*args, **kwargs)¶
**Version**See RegexFullMatch.
OnnxRegexFullMatch_20¶
- class skl2onnx.algebra.onnx_ops.OnnxRegexFullMatch_20(*args, **kwargs)¶
**Version**See RegexFullMatch_20.
OnnxReshape_1¶
OnnxReshape_13¶
- class skl2onnx.algebra.onnx_ops.OnnxReshape_13(*args, **kwargs)¶
**Version**See Reshape_13.
OnnxReshape_14¶
- class skl2onnx.algebra.onnx_ops.OnnxReshape_14(*args, **kwargs)¶
**Version**See Reshape_14.
OnnxReshape_19¶
- class skl2onnx.algebra.onnx_ops.OnnxReshape_19(*args, **kwargs)¶
**Version**See Reshape_19.
OnnxReshape_21¶
- class skl2onnx.algebra.onnx_ops.OnnxReshape_21(*args, **kwargs)¶
**Version**See Reshape_21.
OnnxReshape_5¶
OnnxResize_10¶
OnnxResize_11¶
OnnxResize_13¶
OnnxResize_18¶
OnnxResize_19¶
OnnxReverseSequence¶
- class skl2onnx.algebra.onnx_ops.OnnxReverseSequence(*args, **kwargs)¶
**Version**See ReverseSequence.
OnnxReverseSequence_10¶
- class skl2onnx.algebra.onnx_ops.OnnxReverseSequence_10(*args, **kwargs)¶
**Version**See ReverseSequence_10.
OnnxRoiAlign¶
OnnxRoiAlign_10¶
- class skl2onnx.algebra.onnx_ops.OnnxRoiAlign_10(*args, **kwargs)¶
**Version**See RoiAlign_10.
OnnxRoiAlign_16¶
- class skl2onnx.algebra.onnx_ops.OnnxRoiAlign_16(*args, **kwargs)¶
**Version**See RoiAlign_16.
OnnxRoiAlign_22¶
- class skl2onnx.algebra.onnx_ops.OnnxRoiAlign_22(*args, **kwargs)¶
**Version**See RoiAlign_22.
OnnxRound_11¶
OnnxRound_22¶
OnnxSVMClassifier¶
- class skl2onnx.algebra.onnx_ops.OnnxSVMClassifier(*args, **kwargs)¶
**Version**See SVMClassifier.
OnnxSVMClassifier_1¶
- class skl2onnx.algebra.onnx_ops.OnnxSVMClassifier_1(*args, **kwargs)¶
**Version**See SVMClassifier_1.
OnnxSVMRegressor¶
- class skl2onnx.algebra.onnx_ops.OnnxSVMRegressor(*args, **kwargs)¶
**Version**See SVMRegressor.
OnnxSVMRegressor_1¶
- class skl2onnx.algebra.onnx_ops.OnnxSVMRegressor_1(*args, **kwargs)¶
**Version**See SVMRegressor_1.
OnnxScaler_1¶
OnnxScatterElements¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterElements(*args, **kwargs)¶
**Version**See ScatterElements.
OnnxScatterElements_11¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterElements_11(*args, **kwargs)¶
**Version**See ScatterElements_11.
OnnxScatterElements_13¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterElements_13(*args, **kwargs)¶
**Version**See ScatterElements_13.
OnnxScatterElements_16¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterElements_16(*args, **kwargs)¶
**Version**See ScatterElements_16.
OnnxScatterElements_18¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterElements_18(*args, **kwargs)¶
**Version**See ScatterElements_18.
OnnxScatterND¶
OnnxScatterND_11¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterND_11(*args, **kwargs)¶
**Version**See ScatterND_11.
OnnxScatterND_13¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterND_13(*args, **kwargs)¶
**Version**See ScatterND_13.
OnnxScatterND_16¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterND_16(*args, **kwargs)¶
**Version**See ScatterND_16.
OnnxScatterND_18¶
- class skl2onnx.algebra.onnx_ops.OnnxScatterND_18(*args, **kwargs)¶
**Version**See ScatterND_18.
OnnxScatter_11¶
- class skl2onnx.algebra.onnx_ops.OnnxScatter_11(*args, **kwargs)¶
**Version**See Scatter_11.
OnnxScatter_9¶
OnnxSequenceAt¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceAt(*args, **kwargs)¶
**Version**See SequenceAt.
OnnxSequenceAt_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceAt_11(*args, **kwargs)¶
**Version**See SequenceAt_11.
OnnxSequenceConstruct¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceConstruct(*args, **kwargs)¶
**Version**See SequenceConstruct.
OnnxSequenceConstruct_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceConstruct_11(*args, **kwargs)¶
**Version**See SequenceConstruct_11.
OnnxSequenceEmpty¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceEmpty(*args, **kwargs)¶
**Version**See SequenceEmpty.
OnnxSequenceEmpty_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceEmpty_11(*args, **kwargs)¶
**Version**See SequenceEmpty_11.
OnnxSequenceErase¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceErase(*args, **kwargs)¶
**Version**See SequenceErase.
OnnxSequenceErase_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceErase_11(*args, **kwargs)¶
**Version**See SequenceErase_11.
OnnxSequenceInsert¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceInsert(*args, **kwargs)¶
**Version**See SequenceInsert.
OnnxSequenceInsert_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceInsert_11(*args, **kwargs)¶
**Version**See SequenceInsert_11.
OnnxSequenceLength¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceLength(*args, **kwargs)¶
**Version**See SequenceLength.
OnnxSequenceLength_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceLength_11(*args, **kwargs)¶
**Version**See SequenceLength_11.
OnnxSequenceMap¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceMap(*args, **kwargs)¶
**Version**See SequenceMap.
OnnxSequenceMap_17¶
- class skl2onnx.algebra.onnx_ops.OnnxSequenceMap_17(*args, **kwargs)¶
**Version**See SequenceMap_17.
OnnxShape_13¶
OnnxShape_15¶
OnnxShape_19¶
OnnxShape_21¶
OnnxShrink_9¶
OnnxSigmoid_1¶
OnnxSigmoid_13¶
- class skl2onnx.algebra.onnx_ops.OnnxSigmoid_13(*args, **kwargs)¶
**Version**See Sigmoid_13.
OnnxSigmoid_6¶
OnnxSlice_10¶
OnnxSlice_11¶
OnnxSlice_13¶
OnnxSoftmaxCrossEntropyLoss¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftmaxCrossEntropyLoss(*args, **kwargs)¶
**Version**See SoftmaxCrossEntropyLoss.
OnnxSoftmaxCrossEntropyLoss_12¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftmaxCrossEntropyLoss_12(*args, **kwargs)¶
**Version**See SoftmaxCrossEntropyLoss_12.
OnnxSoftmaxCrossEntropyLoss_13¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftmaxCrossEntropyLoss_13(*args, **kwargs)¶
**Version**See SoftmaxCrossEntropyLoss_13.
OnnxSoftmax_1¶
OnnxSoftmax_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftmax_11(*args, **kwargs)¶
**Version**See Softmax_11.
OnnxSoftmax_13¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftmax_13(*args, **kwargs)¶
**Version**See Softmax_13.
OnnxSoftplus¶
OnnxSoftplus_1¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftplus_1(*args, **kwargs)¶
**Version**See Softplus_1.
OnnxSoftplus_22¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftplus_22(*args, **kwargs)¶
**Version**See Softplus_22.
OnnxSoftsign¶
OnnxSoftsign_1¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftsign_1(*args, **kwargs)¶
**Version**See Softsign_1.
OnnxSoftsign_22¶
- class skl2onnx.algebra.onnx_ops.OnnxSoftsign_22(*args, **kwargs)¶
**Version**See Softsign_22.
OnnxSpaceToDepth¶
- class skl2onnx.algebra.onnx_ops.OnnxSpaceToDepth(*args, **kwargs)¶
**Version**See SpaceToDepth.
OnnxSpaceToDepth_1¶
- class skl2onnx.algebra.onnx_ops.OnnxSpaceToDepth_1(*args, **kwargs)¶
**Version**See SpaceToDepth_1.
OnnxSpaceToDepth_13¶
- class skl2onnx.algebra.onnx_ops.OnnxSpaceToDepth_13(*args, **kwargs)¶
**Version**See SpaceToDepth_13.
OnnxSplitToSequence¶
- class skl2onnx.algebra.onnx_ops.OnnxSplitToSequence(*args, **kwargs)¶
**Version**See SplitToSequence.
OnnxSplitToSequence_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSplitToSequence_11(*args, **kwargs)¶
**Version**See SplitToSequence_11.
OnnxSplit_11¶
OnnxSplit_13¶
OnnxSplit_18¶
OnnxSqueeze_1¶
OnnxSqueeze_11¶
- class skl2onnx.algebra.onnx_ops.OnnxSqueeze_11(*args, **kwargs)¶
**Version**See Squeeze_11.
OnnxSqueeze_13¶
- class skl2onnx.algebra.onnx_ops.OnnxSqueeze_13(*args, **kwargs)¶
**Version**See Squeeze_13.
OnnxSqueeze_21¶
- class skl2onnx.algebra.onnx_ops.OnnxSqueeze_21(*args, **kwargs)¶
**Version**See Squeeze_21.
OnnxStringConcat¶
- class skl2onnx.algebra.onnx_ops.OnnxStringConcat(*args, **kwargs)¶
**Version**See StringConcat.
OnnxStringConcat_20¶
- class skl2onnx.algebra.onnx_ops.OnnxStringConcat_20(*args, **kwargs)¶
**Version**See StringConcat_20.
OnnxStringNormalizer¶
- class skl2onnx.algebra.onnx_ops.OnnxStringNormalizer(*args, **kwargs)¶
**Version**See StringNormalizer.
OnnxStringNormalizer_10¶
- class skl2onnx.algebra.onnx_ops.OnnxStringNormalizer_10(*args, **kwargs)¶
**Version**See StringNormalizer_10.
OnnxStringSplit¶
- class skl2onnx.algebra.onnx_ops.OnnxStringSplit(*args, **kwargs)¶
**Version**See StringSplit.
OnnxStringSplit_20¶
- class skl2onnx.algebra.onnx_ops.OnnxStringSplit_20(*args, **kwargs)¶
**Version**See StringSplit_20.
OnnxTfIdfVectorizer¶
- class skl2onnx.algebra.onnx_ops.OnnxTfIdfVectorizer(*args, **kwargs)¶
**Version**See TfIdfVectorizer.
OnnxTfIdfVectorizer_9¶
- class skl2onnx.algebra.onnx_ops.OnnxTfIdfVectorizer_9(*args, **kwargs)¶
**Version**See TfIdfVectorizer_9.
OnnxThresholdedRelu¶
- class skl2onnx.algebra.onnx_ops.OnnxThresholdedRelu(*args, **kwargs)¶
**Version**See ThresholdedRelu.
OnnxThresholdedRelu_10¶
- class skl2onnx.algebra.onnx_ops.OnnxThresholdedRelu_10(*args, **kwargs)¶
**Version**See ThresholdedRelu_10.
OnnxThresholdedRelu_22¶
- class skl2onnx.algebra.onnx_ops.OnnxThresholdedRelu_22(*args, **kwargs)¶
**Version**See ThresholdedRelu_22.
OnnxTranspose¶
OnnxTranspose_1¶
- class skl2onnx.algebra.onnx_ops.OnnxTranspose_1(*args, **kwargs)¶
**Version**See Transpose_1.
OnnxTranspose_13¶
- class skl2onnx.algebra.onnx_ops.OnnxTranspose_13(*args, **kwargs)¶
**Version**See Transpose_13.
OnnxTranspose_21¶
- class skl2onnx.algebra.onnx_ops.OnnxTranspose_21(*args, **kwargs)¶
**Version**See Transpose_21.
OnnxTreeEnsemble¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsemble(*args, **kwargs)¶
**Version**See TreeEnsemble.
OnnxTreeEnsembleClassifier¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleClassifier(*args, **kwargs)¶
**Version**See TreeEnsembleClassifier.
OnnxTreeEnsembleClassifier_1¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleClassifier_1(*args, **kwargs)¶
**Version**See TreeEnsembleClassifier_1.
OnnxTreeEnsembleClassifier_3¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleClassifier_3(*args, **kwargs)¶
**Version**See TreeEnsembleClassifier_3.
OnnxTreeEnsembleClassifier_5¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleClassifier_5(*args, **kwargs)¶
**Version**See TreeEnsembleClassifier_5.
OnnxTreeEnsembleRegressor¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleRegressor(*args, **kwargs)¶
**Version**See TreeEnsembleRegressor.
OnnxTreeEnsembleRegressor_1¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleRegressor_1(*args, **kwargs)¶
**Version**See TreeEnsembleRegressor_1.
OnnxTreeEnsembleRegressor_3¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleRegressor_3(*args, **kwargs)¶
**Version**See TreeEnsembleRegressor_3.
OnnxTreeEnsembleRegressor_5¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsembleRegressor_5(*args, **kwargs)¶
**Version**See TreeEnsembleRegressor_5.
OnnxTreeEnsemble_5¶
- class skl2onnx.algebra.onnx_ops.OnnxTreeEnsemble_5(*args, **kwargs)¶
**Version**See TreeEnsemble_5.
OnnxTrilu_14¶
OnnxUnique_11¶
OnnxUnsqueeze¶
OnnxUnsqueeze_1¶
- class skl2onnx.algebra.onnx_ops.OnnxUnsqueeze_1(*args, **kwargs)¶
**Version**See Unsqueeze_1.
OnnxUnsqueeze_11¶
- class skl2onnx.algebra.onnx_ops.OnnxUnsqueeze_11(*args, **kwargs)¶
**Version**See Unsqueeze_11.
OnnxUnsqueeze_13¶
- class skl2onnx.algebra.onnx_ops.OnnxUnsqueeze_13(*args, **kwargs)¶
**Version**See Unsqueeze_13.
OnnxUnsqueeze_21¶
- class skl2onnx.algebra.onnx_ops.OnnxUnsqueeze_21(*args, **kwargs)¶
**Version**See Unsqueeze_21.
OnnxUpsample¶
OnnxUpsample_10¶
- class skl2onnx.algebra.onnx_ops.OnnxUpsample_10(*args, **kwargs)¶
**Version**See Upsample_10.
OnnxUpsample_7¶
- class skl2onnx.algebra.onnx_ops.OnnxUpsample_7(*args, **kwargs)¶
**Version**See Upsample_7.
OnnxUpsample_9¶
- class skl2onnx.algebra.onnx_ops.OnnxUpsample_9(*args, **kwargs)¶
**Version**See Upsample_9.