Converter for pyod.models.iforest.IForest

This example answers issues 685. It implements a custom converter for model pyod.models.iforest.IForest. This example uses Implement a new converter as a start.

Trains a model

All imports. It also registered onnx converters for xgboost and lightgbm.

import numpy as np
import pandas as pd
from onnxruntime import InferenceSession
from sklearn.preprocessing import MinMaxScaler
from skl2onnx.proto import onnx_proto
from skl2onnx.common.data_types import (
    FloatTensorType,
    Int64TensorType,
    guess_numpy_type,
)
from skl2onnx import to_onnx, update_registered_converter, get_model_alias
from skl2onnx.algebra.onnx_ops import (
    OnnxIdentity,
    OnnxMul,
    OnnxLess,
    OnnxConcat,
    OnnxCast,
    OnnxAdd,
    OnnxClip,
)
from skl2onnx.algebra.onnx_operator import OnnxSubEstimator

try:
    from pyod.models.iforest import IForest
except (ValueError, ImportError) as e:
    print("Unable to import pyod:", e)
    IForest = None

if IForest is not None:
    data1 = {
        "First": [500, 500, 400, 100, 200, 300, 100],
        "Second": ["a", "b", "a", "b", "a", "b", "c"],
    }

    df1 = pd.DataFrame(data1, columns=["First", "Second"])
    dumdf1 = pd.get_dummies(df1)
    scaler = MinMaxScaler()
    scaler.partial_fit(dumdf1)
    sc_data = scaler.transform(dumdf1)
    model1 = IForest(
        n_estimators=10,
        bootstrap=True,
        behaviour="new",
        contamination=0.1,
        random_state=np.random.RandomState(42),
        verbose=1,
        n_jobs=-1,
    ).fit(sc_data)
    feature_names2 = dumdf1.columns

    initial_type = [("float_input", FloatTensorType([None, len(feature_names2)]))]
Unable to import pyod: No module named 'pyod'

We check that the conversion fails as expected.

if IForest is not None:
    try:
        to_onnx(model1, initial_types=initial_type)
    except Exception as e:
        print(e)

Custom converter

First the parser and the shape calculator. The parser defines the number of outputs and their type. The shape calculator defines their dimensions.

def pyod_iforest_parser(scope, model, inputs, custom_parsers=None):
    alias = get_model_alias(type(model))
    this_operator = scope.declare_local_operator(alias, model)

    # inputs
    this_operator.inputs.append(inputs[0])

    # outputs
    cls_type = inputs[0].type.__class__
    val_y1 = scope.declare_local_variable("label", Int64TensorType())
    val_y2 = scope.declare_local_variable("probability", cls_type())
    this_operator.outputs.append(val_y1)
    this_operator.outputs.append(val_y2)

    # end
    return this_operator.outputs


def pyod_iforest_shape_calculator(operator):
    N = operator.inputs[0].get_first_dimension()
    operator.outputs[0].type.shape = [N, 1]
    operator.outputs[1].type.shape = [N, 2]

Then the converter.

def pyod_iforest_converter(scope, operator, container):
    op = operator.raw_operator
    opv = container.target_opset
    out = operator.outputs

    # We retrieve the unique input.
    X = operator.inputs[0]

    # In most case, computation happen in floats.
    # But it might be with double. ONNX is very strict
    # about types, every constant should have the same
    # type as the input.
    dtype = guess_numpy_type(X.type)

    detector = op.detector_  # Should be IForest from scikit-learn.
    lab_pred = OnnxSubEstimator(detector, X, op_version=opv)
    scores = OnnxIdentity(lab_pred[1], op_version=opv)

    # labels
    threshold = op.threshold_
    above = OnnxLess(scores, np.array([threshold], dtype=dtype), op_version=opv)
    labels = OnnxCast(
        above, op_version=opv, to=onnx_proto.TensorProto.INT64, output_names=out[:1]
    )

    # probabilities
    train_scores = op.decision_scores_
    scaler = MinMaxScaler().fit(train_scores.reshape(-1, 1))
    scores_ = OnnxMul(scores, np.array([-1], dtype=dtype), op_version=opv)
    print(scaler.min_)
    print(scaler.scale_)

    scaled = OnnxMul(scores_, scaler.scale_.astype(dtype), op_version=opv)
    scaled_centered = OnnxAdd(scaled, scaler.min_.astype(dtype), op_version=opv)
    clipped = OnnxClip(
        scaled_centered,
        np.array([0], dtype=dtype),
        np.array([1], dtype=dtype),
        op_version=opv,
    )
    clipped_ = OnnxAdd(
        OnnxMul(clipped, np.array([-1], dtype=dtype), op_version=opv),
        np.array([1], dtype=dtype),
        op_version=opv,
    )

    scores_2d = OnnxConcat(
        clipped_, clipped, axis=1, op_version=opv, output_names=out[1:]
    )

    labels.add_to(scope, container)
    scores_2d.add_to(scope, container)

Finally the registration.

if IForest is not None:
    update_registered_converter(
        IForest,
        "PyodIForest",
        pyod_iforest_shape_calculator,
        pyod_iforest_converter,
        parser=pyod_iforest_parser,
    )

And the conversion.

if IForest is not None:
    onx = to_onnx(
        model1, initial_types=initial_type, target_opset={"": 14, "ai.onnx.ml": 2}
    )

Checking discrepencies

if IForest is not None:
    data = sc_data.astype(np.float32)

    expected_labels = model1.predict(data)
    expected_proba = model1.predict_proba(data)

    sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])
    res = sess.run(None, {"float_input": data})

    onx_labels = res[0]
    onx_proba = res[1]

    diff_labels = np.abs(onx_labels.ravel() - expected_labels.ravel()).max()
    diff_proba = np.abs(onx_proba.ravel() - expected_proba.ravel()).max()

    print("dicrepencies:", diff_labels, diff_proba)

    print("ONNX labels", onx_labels)
    print("ONNX probabilities", onx_proba)

Total running time of the script: (0 minutes 0.008 seconds)

Gallery generated by Sphinx-Gallery