Note
Click here to download the full example code
Convert a pipeline with a CatBoost classifier#
sklearn-onnx only converts scikit-learn models into ONNX but many libraries implement scikit-learn API so that their models can be included in a scikit-learn pipeline. This example considers a pipeline including a :epkg:`CatBoost` model. sklearn-onnx can convert the whole pipeline as long as it knows the converter associated to a CatBoostClassifier. Let’s see how to do it.
Train a CatBoostClassifier#
from pyquickhelper.helpgen.graphviz_helper import plot_graphviz
import numpy
from onnx.helper import get_attribute_value
from sklearn.datasets import load_iris
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from mlprodict.onnxrt import OnnxInference
import onnxruntime as rt
from skl2onnx import convert_sklearn, update_registered_converter
from skl2onnx.common.shape_calculator import calculate_linear_classifier_output_shapes # noqa
from skl2onnx.common.data_types import FloatTensorType, Int64TensorType, guess_tensor_type
from skl2onnx._parse import _apply_zipmap, _get_sklearn_operator_name
from catboost import CatBoostClassifier
from catboost.utils import convert_to_onnx_object
data = load_iris()
X = data.data[:, :2]
y = data.target
ind = numpy.arange(X.shape[0])
numpy.random.shuffle(ind)
X = X[ind, :].copy()
y = y[ind].copy()
pipe = Pipeline([('scaler', StandardScaler()),
('lgbm', CatBoostClassifier(n_estimators=3))])
pipe.fit(X, y)
Learning rate set to 0.5
0: learn: 0.8233591 total: 54.7ms remaining: 109ms
1: learn: 0.6635820 total: 55.8ms remaining: 27.9ms
2: learn: 0.5885989 total: 56.6ms remaining: 0us
Register the converter for CatBoostClassifier#
The model has no converter implemented in sklearn-onnx. We need to register the one coming from CatBoost itself. However, the converter does not follow sklearn-onnx design and needs to be wrapped.
def skl2onnx_parser_castboost_classifier(scope, model, inputs,
custom_parsers=None):
options = scope.get_options(model, dict(zipmap=True))
no_zipmap = isinstance(options['zipmap'], bool) and not options['zipmap']
alias = _get_sklearn_operator_name(type(model))
this_operator = scope.declare_local_operator(alias, model)
this_operator.inputs = inputs
label_variable = scope.declare_local_variable('label', Int64TensorType())
prob_dtype = guess_tensor_type(inputs[0].type)
probability_tensor_variable = scope.declare_local_variable('probabilities', prob_dtype)
this_operator.outputs.append(label_variable)
this_operator.outputs.append(probability_tensor_variable)
probability_tensor = this_operator.outputs
if no_zipmap:
return probability_tensor
return _apply_zipmap(options['zipmap'], scope, model,
inputs[0].type, probability_tensor)
def skl2onnx_convert_catboost(scope, operator, container):
"""
CatBoost returns an ONNX graph with a single node.
This function adds it to the main graph.
"""
onx = convert_to_onnx_object(operator.raw_operator)
opsets = {d.domain: d.version for d in onx.opset_import}
if '' in opsets and opsets[''] >= container.target_opset:
raise RuntimeError(
"CatBoost uses an opset more recent than the target one.")
if len(onx.graph.initializer) > 0 or len(onx.graph.sparse_initializer) > 0:
raise NotImplementedError(
"CatBoost returns a model initializers. This option is not implemented yet.")
if (len(onx.graph.node) not in (1, 2) or not onx.graph.node[0].op_type.startswith("TreeEnsemble") or
(len(onx.graph.node) == 2 and onx.graph.node[1].op_type != "ZipMap")):
types = ", ".join(map(lambda n: n.op_type, onx.graph.node))
raise NotImplementedError(
f"CatBoost returns {len(onx.graph.node)} != 1 (types={types}). "
f"This option is not implemented yet.")
node = onx.graph.node[0]
atts = {}
for att in node.attribute:
atts[att.name] = get_attribute_value(att)
container.add_node(
node.op_type, [operator.inputs[0].full_name],
[operator.outputs[0].full_name, operator.outputs[1].full_name],
op_domain=node.domain, op_version=opsets.get(node.domain, None),
**atts)
update_registered_converter(
CatBoostClassifier,
'CatBoostCatBoostClassifier',
calculate_linear_classifier_output_shapes,
skl2onnx_convert_catboost,
parser=skl2onnx_parser_castboost_classifier,
options={'nocl': [True, False], 'zipmap': [True, False, 'columns']})
Convert#
Compare the predictions#
Predictions with CatBoost.
predict [[2]
[0]
[1]
[1]
[0]]
predict_proba [[0.09983726 0.22940648 0.67075626]]
Predictions with onnxruntime.
sess = rt.InferenceSession("pipeline_catboost.onnx")
pred_onx = sess.run(None, {"input": X[:5].astype(numpy.float32)})
print("predict", pred_onx[0])
print("predict_proba", pred_onx[1][:1])
predict [2 0 1 1 0]
predict_proba [{0: 0.09983726590871811, 1: 0.22940650582313538, 2: 0.6707562804222107}]
Final graph#
oinf = OnnxInference(model_onnx)
ax = plot_graphviz(oinf.to_dot())
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)

Total running time of the script: ( 0 minutes 1.134 seconds)