A new converter with options

Options are used to implement different conversion for a same model. The options can be used to replace an operator MatMul by the Gemm operator and compare the processing time for both graph. Let’s see how to retrieve the options within a converter.

Example Implement a new converter implements a converter which uses operator MatMul. Option use_gemm is used to replace MatMul by Gemm.

Custom model

from pandas import DataFrame
from skl2onnx.tutorial import measure_time
import numpy
from onnxruntime import InferenceSession
from sklearn.base import TransformerMixin, BaseEstimator
from sklearn.datasets import load_iris
from skl2onnx import update_registered_converter
from skl2onnx.common.data_types import guess_numpy_type
from skl2onnx.algebra.onnx_ops import OnnxSub, OnnxMatMul, OnnxGemm
from skl2onnx import to_onnx


class DecorrelateTransformer(TransformerMixin, BaseEstimator):
    """
    Decorrelates correlated gaussian features.

    :param alpha: avoids non inversible matrices
        by adding *alpha* identity matrix

    *Attributes*

    * `self.mean_`: average
    * `self.coef_`: square root of the coveriance matrix
    """

    def __init__(self, alpha=0.0):
        BaseEstimator.__init__(self)
        TransformerMixin.__init__(self)
        self.alpha = alpha

    def fit(self, X, y=None, sample_weights=None):
        if sample_weights is not None:
            raise NotImplementedError("sample_weights != None is not implemented.")
        self.mean_ = numpy.mean(X, axis=0, keepdims=True)
        X = X - self.mean_
        V = X.T @ X / X.shape[0]
        if self.alpha != 0:
            V += numpy.identity(V.shape[0]) * self.alpha
        L, P = numpy.linalg.eig(V)
        Linv = L ** (-0.5)
        diag = numpy.diag(Linv)
        root = P @ diag @ P.transpose()
        self.coef_ = root
        return self

    def transform(self, X):
        return (X - self.mean_) @ self.coef_


data = load_iris()
X = data.data

dec = DecorrelateTransformer()
dec.fit(X)
pred = dec.transform(X[:5])
print(pred)
[[ 0.0167562   0.52111756 -1.24946737 -0.56194325]
 [-0.0727878  -0.80853732 -1.43841018 -0.37441392]
 [-0.69971891 -0.09950908 -1.2138161  -0.3499275 ]
 [-1.13063404 -0.13540568 -0.79087008 -0.73938966]
 [-0.35790036  0.91900236 -1.04034399 -0.6509266 ]]

Conversion into ONNX

Let’s try to convert it and see what happens.

def decorrelate_transformer_shape_calculator(operator):
    op = operator.raw_operator
    input_type = operator.inputs[0].type.__class__
    input_dim = operator.inputs[0].type.shape[0]
    output_type = input_type([input_dim, op.coef_.shape[1]])
    operator.outputs[0].type = output_type


def decorrelate_transformer_converter(scope, operator, container):
    op = operator.raw_operator
    opv = container.target_opset
    out = operator.outputs

    X = operator.inputs[0]

    dtype = guess_numpy_type(X.type)
    options = container.get_options(op, dict(use_gemm=False))
    use_gemm = options["use_gemm"]
    print("conversion: use_gemm=", use_gemm)

    if use_gemm:
        Y = OnnxGemm(
            X,
            op.coef_.astype(dtype),
            (-op.mean_ @ op.coef_).astype(dtype),
            op_version=opv,
            alpha=1.0,
            beta=1.0,
            output_names=out[:1],
        )
    else:
        Y = OnnxMatMul(
            OnnxSub(X, op.mean_.astype(dtype), op_version=opv),
            op.coef_.astype(dtype),
            op_version=opv,
            output_names=out[:1],
        )
    Y.add_to(scope, container)

The registration needs to declare the options supported by the converted.

update_registered_converter(
    DecorrelateTransformer,
    "SklearnDecorrelateTransformer",
    decorrelate_transformer_shape_calculator,
    decorrelate_transformer_converter,
    options={"use_gemm": [True, False]},
)


onx = to_onnx(dec, X.astype(numpy.float32))

sess = InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])

exp = dec.transform(X.astype(numpy.float32))
got = sess.run(None, {"X": X.astype(numpy.float32)})[0]


def diff(p1, p2):
    p1 = p1.ravel()
    p2 = p2.ravel()
    d = numpy.abs(p2 - p1)
    return d.max(), (d / numpy.abs(p1)).max()


print(diff(exp, got))
conversion: use_gemm= False
(6.04657619085458e-07, 0.0002951417065406967)

We try the non default option, use_gemm: True.

onx2 = to_onnx(dec, X.astype(numpy.float32), options={"use_gemm": True})

sess2 = InferenceSession(onx2.SerializeToString(), providers=["CPUExecutionProvider"])

exp = dec.transform(X.astype(numpy.float32))
got2 = sess2.run(None, {"X": X.astype(numpy.float32)})[0]

print(diff(exp, got2))
conversion: use_gemm= True
(2.01757041717876e-06, 0.0005483764980468156)

Time comparison

Let’s compare the two computation.

X32 = X.astype(numpy.float32)
obs = []

context = {"sess": sess, "X32": X32}
mt = measure_time(
    "sess.run(None, {'X': X32})", context, div_by_number=True, number=100, repeat=1000
)
mt["use_gemm"] = False
obs.append(mt)

context = {"sess2": sess2, "X32": X32}
mt2 = measure_time(
    "sess2.run(None, {'X': X32})", context, div_by_number=True, number=10, repeat=100
)
mt2["use_gemm"] = True
obs.append(mt2)

DataFrame(obs).T
0 1
average 0.000029 0.000032
deviation 0.00001 0.000015
min_exec 0.000017 0.000016
max_exec 0.000086 0.000111
repeat 1000 100
number 100 10
use_gemm False True


Total running time of the script: (0 minutes 2.996 seconds)

Gallery generated by Sphinx-Gallery