TutorialΒΆ

The tutorial goes from a simple example which converts a pipeline to a more complex example involving operator not actually implemented in ONNX operators or ONNX ML operators.

The tutorial was tested with following version:

<<<

try:
    import catboost
except Exception as e:
    print("Unable to import catboost due to", e)
    catboost = None
import numpy
import scipy
import sklearn
import lightgbm
import onnx
import onnxmltools
import onnxruntime
import xgboost
import skl2onnx

mods = [
    numpy,
    scipy,
    sklearn,
    lightgbm,
    xgboost,
    catboost,
    onnx,
    onnxmltools,
    onnxruntime,
    skl2onnx,
]
mods = [(m.__name__, m.__version__) for m in mods if m is not None]
mx = max(len(_[0]) for _ in mods) + 1
for name, vers in sorted(mods):
    print("%s%s%s" % (name, " " * (mx - len(name)), vers))

>>>

    catboost    1.2.8
    lightgbm    4.6.0
    numpy       2.3.1
    onnx        1.19.0
    onnxmltools 1.14.0
    onnxruntime 1.23.0
    scipy       1.15.2
    skl2onnx    1.19.1
    sklearn     1.7.1
    xgboost     3.0.2