Benchmark a pipeline

The following example checks up on every step in a pipeline, compares and benchmarks the predictions.

Create a pipeline

We reuse the pipeline implemented in example Pipelining: chaining a PCA and a logistic regression. There is one change because ONNX-ML Imputer does not handle string type. This cannot be part of the final ONNX pipeline and must be removed. Look for comment starting with --- below.

import skl2onnx
import onnx
import sklearn
import numpy
from skl2onnx.helpers import collect_intermediate_steps
from timeit import timeit
from skl2onnx.helpers import compare_objects
import onnxruntime as rt
from onnxconverter_common.data_types import FloatTensorType
from skl2onnx import convert_sklearn
import numpy as np
import pandas as pd

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline

logistic = LogisticRegression()
pca = PCA()
pipe = Pipeline(steps=[("pca", pca), ("logistic", logistic)])

digits = datasets.load_digits()
X_digits = digits.data[:1000]
y_digits = digits.target[:1000]

pipe.fit(X_digits, y_digits)
Pipeline(steps=[('pca', PCA()), ('logistic', LogisticRegression())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.


Conversion to ONNX

initial_types = [("input", FloatTensorType((None, X_digits.shape[1])))]
model_onnx = convert_sklearn(pipe, initial_types=initial_types, target_opset=12)

sess = rt.InferenceSession(
    model_onnx.SerializeToString(), providers=["CPUExecutionProvider"]
)
print("skl predict_proba")
print(pipe.predict_proba(X_digits[:2]))
onx_pred = sess.run(None, {"input": X_digits[:2].astype(np.float32)})[1]
df = pd.DataFrame(onx_pred)
print("onnx predict_proba")
print(df.values)
skl predict_proba
[[9.99998530e-01 7.81608915e-19 4.87445983e-10 1.79842282e-08
  3.58700553e-10 1.18138026e-06 4.14411050e-08 1.48275026e-07
  2.50162856e-08 5.51240033e-08]
 [1.37889361e-14 9.99999324e-01 9.17867405e-11 8.30390363e-13
  2.57277806e-07 8.84035067e-12 5.11781433e-11 2.83346409e-11
  4.18965301e-07 1.32796354e-13]]
onnx predict_proba
[[9.99998569e-01 7.81611026e-19 4.87444585e-10 1.79842026e-08
  3.58700042e-10 1.18137689e-06 4.14409520e-08 1.48274751e-07
  2.50162131e-08 5.51239410e-08]
 [1.37888807e-14 9.99999344e-01 9.17865159e-11 8.30387679e-13
  2.57277748e-07 8.84032951e-12 5.11779785e-11 2.83345725e-11
  4.18964021e-07 1.32796280e-13]]

Comparing outputs

compare_objects(pipe.predict_proba(X_digits[:2]), onx_pred)
# No exception so they are the same.

Benchmarks

print("scikit-learn")
print(timeit("pipe.predict_proba(X_digits[:1])", number=10000, globals=globals()))
print("onnxruntime")
print(
    timeit(
        "sess.run(None, {'input': X_digits[:1].astype(np.float32)})[1]",
        number=10000,
        globals=globals(),
    )
)
scikit-learn
2.1023744829981297
onnxruntime
0.12994074699963676

Intermediate steps

Let’s imagine the final output is wrong and we need to look into each component of the pipeline which one is failing. The following method modifies the scikit-learn pipeline to steal the intermediate outputs and produces an smaller ONNX graph for every operator.

steps = collect_intermediate_steps(pipe, "pipeline", initial_types)

assert len(steps) == 2

pipe.predict_proba(X_digits[:2])

for _i, step in enumerate(steps):
    onnx_step = step["onnx_step"]
    sess = rt.InferenceSession(
        onnx_step.SerializeToString(), providers=["CPUExecutionProvider"]
    )
    onnx_outputs = sess.run(None, {"input": X_digits[:2].astype(np.float32)})
    skl_outputs = step["model"]._debug.outputs
    if "transform" in skl_outputs:
        compare_objects(skl_outputs["transform"], onnx_outputs[0])
        print("benchmark", step["model"].__class__)
        print("scikit-learn")
        print(
            timeit(
                "step['model'].transform(X_digits[:1])", number=10000, globals=globals()
            )
        )
    else:
        compare_objects(skl_outputs["predict_proba"], onnx_outputs[1])
        print("benchmark", step["model"].__class__)
        print("scikit-learn")
        print(
            timeit(
                "step['model'].predict_proba(X_digits[:1])",
                number=10000,
                globals=globals(),
            )
        )
    print("onnxruntime")
    print(
        timeit(
            "sess.run(None, {'input': X_digits[:1].astype(np.float32)})",
            number=10000,
            globals=globals(),
        )
    )
benchmark <class 'sklearn.decomposition._pca.PCA'>
scikit-learn
0.6131834360021458
onnxruntime
0.07247600700065959
benchmark <class 'sklearn.linear_model._logistic.LogisticRegression'>
scikit-learn
0.8395350790015073
onnxruntime
0.10347538899804931

Versions used for this example

print("numpy:", numpy.__version__)
print("scikit-learn:", sklearn.__version__)
print("onnx: ", onnx.__version__)
print("onnxruntime: ", rt.__version__)
print("skl2onnx: ", skl2onnx.__version__)
numpy: 2.2.0
scikit-learn: 1.6.0
onnx:  1.18.0
onnxruntime:  1.21.0+cu126
skl2onnx:  1.18.0

Total running time of the script: (0 minutes 4.029 seconds)

Gallery generated by Sphinx-Gallery