TutorialΒΆ

The tutorial goes from a simple example which converts a pipeline to a more complex example involving operator not actually implemented in ONNX operators or ONNX ML operators.

The tutorial was tested with following version:

<<<

try:
    import catboost
except Exception as e:
    print("Unable to import catboost due to", e)
    catboost = None
import numpy
import scipy
import sklearn
import lightgbm
import onnx
import onnxmltools
import onnxruntime
import xgboost
import skl2onnx

mods = [
    numpy,
    scipy,
    sklearn,
    lightgbm,
    xgboost,
    catboost,
    onnx,
    onnxmltools,
    onnxruntime,
    skl2onnx,
]
mods = [(m.__name__, m.__version__) for m in mods if m is not None]
mx = max(len(_[0]) for _ in mods) + 1
for name, vers in sorted(mods):
    print("%s%s%s" % (name, " " * (mx - len(name)), vers))

>>>

    Unable to import catboost due to numpy.dtype size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject
    lightgbm    4.5.0
    numpy       2.2.0
    onnx        1.18.0
    onnxmltools 1.13.0
    onnxruntime 1.21.0+cu126
    scipy       1.14.1
    skl2onnx    1.18.0
    sklearn     1.6.0
    xgboost     2.1.3