Note
Go to the end to download the full example code.
Convert a pipeline with a XGBoost model¶
sklearn-onnx only converts scikit-learn models into ONNX but many libraries implement scikit-learn API so that their models can be included in a scikit-learn pipeline. This example considers a pipeline including a XGBoost model. sklearn-onnx can convert the whole pipeline as long as it knows the converter associated to a XGBClassifier. Let’s see how to do it.
Train a XGBoost classifier¶
import numpy
import onnxruntime as rt
from sklearn.datasets import load_iris, load_diabetes, make_classification
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from xgboost import XGBClassifier, XGBRegressor, DMatrix, train as train_xgb
from skl2onnx.common.data_types import FloatTensorType
from skl2onnx import convert_sklearn, to_onnx, update_registered_converter
from skl2onnx.common.shape_calculator import (
calculate_linear_classifier_output_shapes,
calculate_linear_regressor_output_shapes,
)
from onnxmltools.convert.xgboost.operator_converters.XGBoost import convert_xgboost
from onnxmltools.convert import convert_xgboost as convert_xgboost_booster
data = load_iris()
X = data.data[:, :2]
y = data.target
ind = numpy.arange(X.shape[0])
numpy.random.shuffle(ind)
X = X[ind, :].copy()
y = y[ind].copy()
pipe = Pipeline([("scaler", StandardScaler()), ("xgb", XGBClassifier(n_estimators=3))])
pipe.fit(X, y)
# The conversion fails but it is expected.
try:
convert_sklearn(
pipe,
"pipeline_xgboost",
[("input", FloatTensorType([None, 2]))],
target_opset={"": 12, "ai.onnx.ml": 2},
)
except Exception as e:
print(e)
# The error message tells no converter was found
# for :epkg:`XGBoost` models. By default, :epkg:`sklearn-onnx`
# only handles models from :epkg:`scikit-learn` but it can
# be extended to every model following :epkg:`scikit-learn`
# API as long as the module knows there exists a converter
# for every model used in a pipeline. That's why
# we need to register a converter.
'super' object has no attribute '__sklearn_tags__'
Register the converter for XGBClassifier¶
The converter is implemented in onnxmltools: onnxmltools…XGBoost.py. and the shape calculator: onnxmltools…Classifier.py.
update_registered_converter(
XGBClassifier,
"XGBoostXGBClassifier",
calculate_linear_classifier_output_shapes,
convert_xgboost,
options={"nocl": [True, False], "zipmap": [True, False, "columns"]},
)
Convert again¶
model_onnx = convert_sklearn(
pipe,
"pipeline_xgboost",
[("input", FloatTensorType([None, 2]))],
target_opset={"": 12, "ai.onnx.ml": 2},
)
# And save.
with open("pipeline_xgboost.onnx", "wb") as f:
f.write(model_onnx.SerializeToString())
Traceback (most recent call last):
File "/home/xadupre/github/sklearn-onnx/docs/tutorial/plot_gexternal_xgboost.py", line 96, in <module>
model_onnx = convert_sklearn(
^^^^^^^^^^^^^^^^
File "/home/xadupre/github/sklearn-onnx/skl2onnx/convert.py", line 192, in convert_sklearn
topology = parse_sklearn_model(
^^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/github/sklearn-onnx/skl2onnx/_parse.py", line 847, in parse_sklearn_model
outputs = parse_sklearn(
^^^^^^^^^^^^^^
File "/home/xadupre/github/sklearn-onnx/skl2onnx/_parse.py", line 757, in parse_sklearn
res = _parse_sklearn(scope, model, inputs, custom_parsers=custom_parsers)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/github/sklearn-onnx/skl2onnx/_parse.py", line 688, in _parse_sklearn
outputs = sklearn_parsers_map[tmodel](
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/github/sklearn-onnx/skl2onnx/_parse.py", line 295, in _parse_sklearn_pipeline
) and is_classifier(step[1]):
^^^^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/vv/this312/lib/python3.12/site-packages/sklearn/base.py", line 1237, in is_classifier
return get_tags(estimator).estimator_type == "classifier"
^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/vv/this312/lib/python3.12/site-packages/sklearn/utils/_tags.py", line 405, in get_tags
sklearn_tags_provider[klass] = klass.__sklearn_tags__(estimator) # type: ignore[attr-defined]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/xadupre/vv/this312/lib/python3.12/site-packages/sklearn/base.py", line 540, in __sklearn_tags__
tags = super().__sklearn_tags__()
^^^^^^^^^^^^^^^^^^^^^^^^
AttributeError: 'super' object has no attribute '__sklearn_tags__'
Compare the predictions¶
Predictions with XGBoost.
print("predict", pipe.predict(X[:5]))
print("predict_proba", pipe.predict_proba(X[:1]))
Predictions with onnxruntime.
sess = rt.InferenceSession("pipeline_xgboost.onnx", providers=["CPUExecutionProvider"])
pred_onx = sess.run(None, {"input": X[:5].astype(numpy.float32)})
print("predict", pred_onx[0])
print("predict_proba", pred_onx[1][:1])
Same example with XGBRegressor¶
update_registered_converter(
XGBRegressor,
"XGBoostXGBRegressor",
calculate_linear_regressor_output_shapes,
convert_xgboost,
)
data = load_diabetes()
x = data.data
y = data.target
X_train, X_test, y_train, _ = train_test_split(x, y, test_size=0.5)
pipe = Pipeline([("scaler", StandardScaler()), ("xgb", XGBRegressor(n_estimators=3))])
pipe.fit(X_train, y_train)
print("predict", pipe.predict(X_test[:5]))
ONNX
onx = to_onnx(
pipe, X_train.astype(numpy.float32), target_opset={"": 12, "ai.onnx.ml": 2}
)
sess = rt.InferenceSession(onx.SerializeToString(), providers=["CPUExecutionProvider"])
pred_onx = sess.run(None, {"X": X_test[:5].astype(numpy.float32)})
print("predict", pred_onx[0].ravel())
Some discrepencies may appear. In that case, you should read Issues when switching to float.
Same with a Booster¶
A booster cannot be inserted in a pipeline. It requires a different conversion function because it does not follow scikit-learn API.
x, y = make_classification(
n_classes=2, n_features=5, n_samples=100, random_state=42, n_informative=3
)
X_train, X_test, y_train, _ = train_test_split(x, y, test_size=0.5, random_state=42)
dtrain = DMatrix(X_train, label=y_train)
param = {"objective": "multi:softmax", "num_class": 3}
bst = train_xgb(param, dtrain, 10)
initial_type = [("float_input", FloatTensorType([None, X_train.shape[1]]))]
try:
onx = convert_xgboost_booster(bst, "name", initial_types=initial_type)
cont = True
except AssertionError as e:
print("XGBoost is too recent or onnxmltools too old.", e)
cont = False
if cont:
sess = rt.InferenceSession(
onx.SerializeToString(), providers=["CPUExecutionProvider"]
)
input_name = sess.get_inputs()[0].name
label_name = sess.get_outputs()[0].name
pred_onx = sess.run([label_name], {input_name: X_test.astype(numpy.float32)})[0]
print(pred_onx)
Total running time of the script: (0 minutes 0.032 seconds)