Unsqueeze¶
Unsqueeze - 23¶
Version¶
name: Unsqueeze (GitHub)
domain:
main
since_version:
23
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 23.
Summary¶
Insert single-dimensional entries to the shape of an input tensor (data
).
Takes one required input axes
- which contains a list of dimension indices and this operator will insert a dimension of value 1
into the corresponding index of the output tensor (expanded
).
For example, given an input tensor (data
) of shape [3, 4, 5], then
Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded
) containing same data as data
but with shape [1, 3, 4, 5, 1].
The input axes
should not contain any duplicate entries. It is an error if it contains duplicates.
The rank of the output tensor (output_rank
) is the rank of the input tensor (data
) plus the number of values in axes
.
Each value in axes
should be within the (inclusive) range [-output_rank , output_rank - 1].
The order of values in axes
does not matter and can come in any order.
Inputs¶
data (heterogeneous) - T:
Original tensor
axes (heterogeneous) - tensor(int64):
List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Outputs¶
expanded (heterogeneous) - T:
Reshaped tensor with same data as input.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(float4e2m1)
,tensor(float8e4m3fn)
,tensor(float8e4m3fnuz)
,tensor(float8e5m2)
,tensor(float8e5m2fnuz)
,tensor(int16)
,tensor(int32)
,tensor(int4)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint4)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types up to IRv11.
Unsqueeze - 21¶
Version¶
name: Unsqueeze (GitHub)
domain:
main
since_version:
21
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 21.
Summary¶
Insert single-dimensional entries to the shape of an input tensor (data
).
Takes one required input axes
- which contains a list of dimension indices and this operator will insert a dimension of value 1
into the corresponding index of the output tensor (expanded
).
For example, given an input tensor (data
) of shape [3, 4, 5], then
Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded
) containing same data as data
but with shape [1, 3, 4, 5, 1].
The input axes
should not contain any duplicate entries. It is an error if it contains duplicates.
The rank of the output tensor (output_rank
) is the rank of the input tensor (data
) plus the number of values in axes
.
Each value in axes
should be within the (inclusive) range [-output_rank , output_rank - 1].
The order of values in axes
does not matter and can come in any order.
Inputs¶
data (heterogeneous) - T:
Original tensor
axes (heterogeneous) - tensor(int64):
List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Outputs¶
expanded (heterogeneous) - T:
Reshaped tensor with same data as input.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(float8e4m3fn)
,tensor(float8e4m3fnuz)
,tensor(float8e5m2)
,tensor(float8e5m2fnuz)
,tensor(int16)
,tensor(int32)
,tensor(int4)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint4)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types up to IRv10.
Unsqueeze - 13¶
Version¶
name: Unsqueeze (GitHub)
domain:
main
since_version:
13
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 13.
Summary¶
Insert single-dimensional entries to the shape of an input tensor (data
).
Takes one required input axes
- which contains a list of dimension indices and this operator will insert a dimension of value 1
into the corresponding index of the output tensor (expanded
).
For example, given an input tensor (data
) of shape [3, 4, 5], then
Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded
) containing same data as data
but with shape [1, 3, 4, 5, 1].
The input axes
should not contain any duplicate entries. It is an error if it contains duplicates.
The rank of the output tensor (output_rank
) is the rank of the input tensor (data
) plus the number of values in axes
.
Each value in axes
should be within the (inclusive) range [-output_rank , output_rank - 1].
The order of values in axes
does not matter and can come in any order.
Inputs¶
data (heterogeneous) - T:
Original tensor
axes (heterogeneous) - tensor(int64):
List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Outputs¶
expanded (heterogeneous) - T:
Reshaped tensor with same data as input.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.
Unsqueeze - 11¶
Version¶
name: Unsqueeze (GitHub)
domain:
main
since_version:
11
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 11.
Summary¶
Insert single-dimensional entries to the shape of an input tensor (data
).
Takes one required argument axes
- which contains a list of dimension indices and this operator will insert a dimension of value 1
into the corresponding index of the output tensor (expanded
).
For example:
Given an input tensor (data
) of shape [3, 4, 5], then
Unsqueeze(data, axes=[0, 4]) outputs a tensor (expanded
) containing same data as data
but with shape [1, 3, 4, 5, 1].
The attribute axes
should not contain any duplicate entries. It is an error if it contains duplicates.
The rank of the output tensor (output_rank
) is the rank of the input tensor (data
) plus the number of values in axes
.
Each value in axes
should be within the (inclusive) range [-output_rank , output_rank - 1].
The order of values in axes
does not matter and can come in any order.
Attributes¶
axes - INTS (required) :
List of integers indicating the dimensions to be inserted. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(expanded).
Inputs¶
data (heterogeneous) - T:
Original tensor
Outputs¶
expanded (heterogeneous) - T:
Reshaped tensor with same data as input.
Type Constraints¶
T in (
tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.
Unsqueeze - 1¶
Version¶
name: Unsqueeze (GitHub)
domain:
main
since_version:
1
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 1.
Summary¶
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes
, a list of dimensions that will be inserted.
Dimension indices in axes
are as seen in the output tensor. For example:
Given a tensor such that tensor with shape [3, 4, 5], then
Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
Attributes¶
axes - INTS (required) :
List of non-negative integers, indicate the dimensions to be inserted
Inputs¶
data (heterogeneous) - T:
Original tensor
Outputs¶
expanded (heterogeneous) - T:
Reshaped tensor with same data as input.
Type Constraints¶
T in (
tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.