Transpose¶
Transpose - 24¶
Version¶
name: Transpose (GitHub)
domain:
mainsince_version:
24function:
Falsesupport_level:
SupportType.COMMONshape inference:
True
This version of the operator has been available since version 24.
Summary¶
Returns a transpose of the input tensor. (Similar to numpy.transpose).
The optional attribute perm must be a permutation of the dimensions of
the input tensor. Axis i of the output tensor corresponds to the axis
perm[i] of the input tensor.
For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 1, 3).
When perm=(1, 2, 0), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 3, 1).
If the attribute perm is omitted, its default value is (n-1, ..., 0),
where n is the rank of the input tensor.
Attributes¶
perm - INTS :
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given. Its length must be equal to the rank of the input.
Inputs¶
data (heterogeneous) - T:
An input tensor.
Outputs¶
transposed (heterogeneous) - T:
Transposed output.
Type Constraints¶
T in (
tensor(bfloat16),tensor(bool),tensor(complex128),tensor(complex64),tensor(double),tensor(float),tensor(float16),tensor(float4e2m1),tensor(float8e4m3fn),tensor(float8e4m3fnuz),tensor(float8e5m2),tensor(float8e5m2fnuz),tensor(float8e8m0),tensor(int16),tensor(int32),tensor(int4),tensor(int64),tensor(int8),tensor(string),tensor(uint16),tensor(uint32),tensor(uint4),tensor(uint64),tensor(uint8)):Constrain input and output types to all tensor types.
Transpose - 23¶
Version¶
name: Transpose (GitHub)
domain:
mainsince_version:
23function:
Falsesupport_level:
SupportType.COMMONshape inference:
True
This version of the operator has been available since version 23.
Summary¶
Returns a transpose of the input tensor. (Similar to numpy.transpose).
The optional attribute perm must be a permutation of the dimensions of
the input tensor. Axis i of the output tensor corresponds to the axis
perm[i] of the input tensor.
For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 1, 3).
When perm=(1, 2, 0), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 3, 1).
If the attribute perm is omitted, its default value is (n-1, ..., 0),
where n is the rank of the input tensor.
Attributes¶
perm - INTS :
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given. Its length must be equal to the rank of the input.
Inputs¶
data (heterogeneous) - T:
An input tensor.
Outputs¶
transposed (heterogeneous) - T:
Transposed output.
Type Constraints¶
T in (
tensor(bfloat16),tensor(bool),tensor(complex128),tensor(complex64),tensor(double),tensor(float),tensor(float16),tensor(float4e2m1),tensor(float8e4m3fn),tensor(float8e4m3fnuz),tensor(float8e5m2),tensor(float8e5m2fnuz),tensor(int16),tensor(int32),tensor(int4),tensor(int64),tensor(int8),tensor(string),tensor(uint16),tensor(uint32),tensor(uint4),tensor(uint64),tensor(uint8)):Constrain input and output types to all tensor types.
Transpose - 21¶
Version¶
name: Transpose (GitHub)
domain:
mainsince_version:
21function:
Falsesupport_level:
SupportType.COMMONshape inference:
True
This version of the operator has been available since version 21.
Summary¶
Returns a transpose of the input tensor. (Similar to numpy.transpose).
The optional attribute perm must be a permutation of the dimensions of
the input tensor. Axis i of the output tensor corresponds to the axis
perm[i] of the input tensor.
For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 1, 3).
When perm=(1, 2, 0), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 3, 1).
If the attribute perm is omitted, its default value is (n-1, ..., 0),
where n is the rank of the input tensor.
Attributes¶
perm - INTS :
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given. Its length must be equal to the rank of the input.
Inputs¶
data (heterogeneous) - T:
An input tensor.
Outputs¶
transposed (heterogeneous) - T:
Transposed output.
Type Constraints¶
T in (
tensor(bfloat16),tensor(bool),tensor(complex128),tensor(complex64),tensor(double),tensor(float),tensor(float16),tensor(float8e4m3fn),tensor(float8e4m3fnuz),tensor(float8e5m2),tensor(float8e5m2fnuz),tensor(int16),tensor(int32),tensor(int4),tensor(int64),tensor(int8),tensor(string),tensor(uint16),tensor(uint32),tensor(uint4),tensor(uint64),tensor(uint8)):Constrain input and output types to all tensor types.
Transpose - 13¶
Version¶
name: Transpose (GitHub)
domain:
mainsince_version:
13function:
Falsesupport_level:
SupportType.COMMONshape inference:
True
This version of the operator has been available since version 13.
Summary¶
Returns a transpose of the input tensor. (Similar to numpy.transpose).
The optional attribute perm must be a permutation of the dimensions of
the input tensor. Axis i of the output tensor corresponds to the axis
perm[i] of the input tensor.
For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 1, 3).
When perm=(1, 2, 0), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 3, 1).
If the attribute perm is omitted, its default value is (n-1, ..., 0),
where n is the rank of the input tensor.
Attributes¶
perm - INTS :
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
Inputs¶
data (heterogeneous) - T:
An input tensor.
Outputs¶
transposed (heterogeneous) - T:
Transposed output.
Type Constraints¶
T in (
tensor(bfloat16),tensor(bool),tensor(complex128),tensor(complex64),tensor(double),tensor(float),tensor(float16),tensor(int16),tensor(int32),tensor(int64),tensor(int8),tensor(string),tensor(uint16),tensor(uint32),tensor(uint64),tensor(uint8)):Constrain input and output types to all tensor types.
Transpose - 1¶
Version¶
name: Transpose (GitHub)
domain:
mainsince_version:
1function:
Falsesupport_level:
SupportType.COMMONshape inference:
True
This version of the operator has been available since version 1.
Summary¶
Returns a transpose of the input tensor. (Similar to numpy.transpose).
The optional attribute perm must be a permutation of the dimensions of
the input tensor. Axis i of the output tensor corresponds to the axis
perm[i] of the input tensor.
For example, when perm=(1, 0, 2), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 1, 3).
When perm=(1, 2, 0), given an input tensor of shape (1, 2, 3),
the output shape will be (2, 3, 1).
If the attribute perm is omitted, its default value is (n-1, ..., 0),
where n is the rank of the input tensor.
Attributes¶
perm - INTS :
A list of integers. By default, reverse the dimensions, otherwise permute the axes according to the values given.
Inputs¶
data (heterogeneous) - T:
An input tensor.
Outputs¶
transposed (heterogeneous) - T:
Transposed output.
Type Constraints¶
T in (
tensor(bool),tensor(complex128),tensor(complex64),tensor(double),tensor(float),tensor(float16),tensor(int16),tensor(int32),tensor(int64),tensor(int8),tensor(string),tensor(uint16),tensor(uint32),tensor(uint64),tensor(uint8)):Constrain input and output types to all tensor types.