Pad¶
Pad - 23¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
23
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 23.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0, empty string, or False)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of arraywrap
- wrap-around padding as if the data tensor forms a torus
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
]
Example 2 (reflect
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'reflect'
output = [
[1.0, 1.2, 1.0, 1.2],
[2.3, 3.4, 2.3, 3.4],
[4.5, 5.7, 4.5, 5.7],
]
Example 3 (edge
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'edge'
output = [
[1.0, 1.0, 1.0, 1.2],
[2.3, 2.3, 2.3, 3.4],
[4.5, 4.5, 4.5, 5.7],
]
Example 4 (wrap
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [2, 1, 1, 1]
mode = 'wrap'
output = [
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
,wrap
Inputs¶
Between 2 and 4 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * num_axes] wherenum_axes
refers to the number of elements in theaxes
input or the input rank ifaxes
are not provided explicitly.pads
format should be: [x1_begin, x2_begin, …, x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisaxes[i]
and xi_end, the number of pad values added at the end of axisaxes[i]
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0, empty string or False).axes (optional, heterogeneous) - Tind:
1-D tensor of axes that
pads
apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an axis is repeated. If not provided, all axes are assumed ([0, 1, ..., input_rank-1]
).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(float4e2m1)
,tensor(float8e4m3fn)
,tensor(float8e4m3fnuz)
,tensor(float8e5m2)
,tensor(float8e5m2fnuz)
,tensor(int16)
,tensor(int32)
,tensor(int4)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint4)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types up to IRv11.
Tind in (
tensor(int32)
,tensor(int64)
):Constrain indices to integer types
Pad - 21¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
21
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 21.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0, empty string, or False)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of arraywrap
- wrap-around padding as if the data tensor forms a torus
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
]
Example 2 (reflect
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'reflect'
output = [
[1.0, 1.2, 1.0, 1.2],
[2.3, 3.4, 2.3, 3.4],
[4.5, 5.7, 4.5, 5.7],
]
Example 3 (edge
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'edge'
output = [
[1.0, 1.0, 1.0, 1.2],
[2.3, 2.3, 2.3, 3.4],
[4.5, 4.5, 4.5, 5.7],
]
Example 4 (wrap
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [2, 1, 1, 1]
mode = 'wrap'
output = [
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
,wrap
Inputs¶
Between 2 and 4 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * num_axes] wherenum_axes
refers to the number of elements in theaxes
input or the input rank ifaxes
are not provided explicitly.pads
format should be: [x1_begin, x2_begin, …, x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisaxes[i]
and xi_end, the number of pad values added at the end of axisaxes[i]
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0, empty string or False).axes (optional, heterogeneous) - Tind:
1-D tensor of axes that
pads
apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an axis is repeated. If not provided, all axes are assumed ([0, 1, ..., input_rank-1]
).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(float8e4m3fn)
,tensor(float8e4m3fnuz)
,tensor(float8e5m2)
,tensor(float8e5m2fnuz)
,tensor(int16)
,tensor(int32)
,tensor(int4)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint4)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types up to IRv10.
Tind in (
tensor(int32)
,tensor(int64)
):Constrain indices to integer types
Pad - 19¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
19
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 19.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0, empty string, or False)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of arraywrap
- wrap-around padding as if the data tensor forms a torus
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
]
Example 2 (reflect
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'reflect'
output = [
[1.0, 1.2, 1.0, 1.2],
[2.3, 3.4, 2.3, 3.4],
[4.5, 5.7, 4.5, 5.7],
]
Example 3 (edge
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'edge'
output = [
[1.0, 1.0, 1.0, 1.2],
[2.3, 2.3, 2.3, 3.4],
[4.5, 4.5, 4.5, 5.7],
]
Example 4 (wrap
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [2, 1, 1, 1]
mode = 'wrap'
output = [
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
[3.4, 2.3, 3.4, 2.3],
[5.7, 4.5, 5.7, 4.5],
[1.2, 1.0, 1.2, 1.0],
]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
,wrap
Inputs¶
Between 2 and 4 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * num_axes] wherenum_axes
refers to the number of elements in theaxes
input or the input rank ifaxes
are not provided explicitly.pads
format should be: [x1_begin, x2_begin, …, x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisaxes[i]
and xi_end, the number of pad values added at the end of axisaxes[i]
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0, empty string or False).axes (optional, heterogeneous) - Tind:
1-D tensor of axes that
pads
apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an axis is repeated. If not provided, all axes are assumed ([0, 1, ..., input_rank-1]
).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.
Tind in (
tensor(int32)
,tensor(int64)
):Constrain indices to integer types
Pad - 18¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
18
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 18.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0, empty string, or False)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of array
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'constant'
constant_value = 0.0
output = [
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
]
Example 2 (reflect
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'reflect'
output = [
[1.0, 1.2, 1.0, 1.2],
[2.3, 3.4, 2.3, 3.4],
[4.5, 5.7, 4.5, 5.7],
]
Example 3 (edge
mode):
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = 'edge'
output = [
[1.0, 1.0, 1.0, 1.2],
[2.3, 2.3, 2.3, 3.4],
[4.5, 4.5, 4.5, 5.7],
]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
Inputs¶
Between 2 and 4 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * num_axes] wherenum_axes
refers to the number of elements in theaxes
input or the input rank ifaxes
are not provided explicitly.pads
format should be: [x1_begin, x2_begin, …, x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisaxes[i]
and xi_end, the number of pad values added at the end of axisaxes[i]
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0, empty string or False).axes (optional, heterogeneous) - Tind:
1-D tensor of axes that
pads
apply to. Negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(data). Behavior is undefined if an axis is repeated. If not provided, all axes are assumed ([0, 1, ..., input_rank-1]
).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.
Tind in (
tensor(int32)
,tensor(int64)
):Constrain indices to integer types
Pad - 13¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
13
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 13.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0, empty string, or False)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of array
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [ [1.0, 1.2], [2.3, 3.4], [4.5, 5.7], ]
pads = [0, 2, 0, 0]
mode = ‘constant’
constant_value = 0.0
output = [ [0.0, 0.0, 1.0, 1.2], [0.0, 0.0, 2.3, 3.4], [0.0, 0.0, 4.5, 5.7], ]
Example 2 (reflect
mode):
data =
[
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = ‘reflect’
output = [ [1.0, 1.2, 1.0, 1.2], [2.3, 3.4, 2.3, 3.4], [4.5, 5.7, 4.5, 5.7], ]
Example 3 (edge
mode):
data =
[
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = ‘edge’
output = [ [1.0, 1.0, 1.0, 1.2], [2.3, 2.3, 2.3, 3.4], [4.5, 4.5, 4.5, 5.7], ]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
Inputs¶
Between 2 and 3 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * input_rank].pads
format should be: [x1_begin, x2_begin,…,x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisi
and xi_end, the number of pad values added at the end of axisi
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0, empty string or False).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(bool)
,tensor(complex128)
,tensor(complex64)
,tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(string)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output types to all tensor types.
Pad - 11¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
11
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 11.
Summary¶
Given a tensor containing the data to be padded (data
), a tensor containing the number of start and end pad values for axis (pads
), (optionally) a mode
, and (optionally) constant_value
,
a padded tensor (output
) is generated.
The three supported modes
are (similar to corresponding modes supported by numpy.pad
):
constant
(default) - pads with a given constant value as specified byconstant_value
(which defaults to 0)reflect
- pads with the reflection of the vector mirrored on the first and last values of the vector along each axisedge
- pads with the edge values of array
Example 1 (constant
mode):
Insert 0 pads to the beginning of the second dimension.
data = [ [1.0, 1.2], [2.3, 3.4], [4.5, 5.7], ]
pads = [0, 2, 0, 0]
mode = ‘constant’
constant_value = 0.0
output = [ [0.0, 0.0, 1.0, 1.2], [0.0, 0.0, 2.3, 3.4], [0.0, 0.0, 4.5, 5.7], ]
Example 2 (reflect
mode):
data =
[
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = ‘reflect’
output = [ [1.0, 1.2, 1.0, 1.2], [2.3, 3.4, 2.3, 3.4], [4.5, 5.7, 4.5, 5.7], ]
Example 3 (edge
mode):
data =
[
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
mode = ‘edge’
output = [ [1.0, 1.0, 1.0, 1.2], [2.3, 2.3, 2.3, 3.4], [4.5, 4.5, 4.5, 5.7], ]
Attributes¶
mode - STRING (default is
'constant'
):Supported modes:
constant
(default),reflect
,edge
Inputs¶
Between 2 and 3 inputs.
data (heterogeneous) - T:
Input tensor.
pads (heterogeneous) - tensor(int64):
Tensor of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D input tensor, it is the number of pixels.
pads
should be a 1D tensor of shape [2 * input_rank].pads
format should be: [x1_begin, x2_begin,…,x1_end, x2_end,…], where xi_begin is the number of pad values added at the beginning of axisi
and xi_end, the number of pad values added at the end of axisi
.constant_value (optional, heterogeneous) - T:
(Optional) A scalar value to be used if the mode chosen is
constant
(by default it is 0).
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
,tensor(int16)
,tensor(int32)
,tensor(int64)
,tensor(int8)
,tensor(uint16)
,tensor(uint32)
,tensor(uint64)
,tensor(uint8)
):Constrain input and output to only numeric types.
Pad - 2¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
2
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 2.
Summary¶
Given data
tensor, pads, mode, and value.
Example:
Insert 0 pads to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
pads = [0, 2, 0, 0]
output = [
[
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
],
]
Attributes¶
mode - STRING (default is
'constant'
):Three modes: constant(default), reflect, edge
pads - INTS (required) :
List of integers indicating the number of padding elements to add or remove (if negative) at the beginning and end of each axis. For 2D it is the number of pixels.
pads
rank should be double of the input’s rank.pads
format should be as follow [x1_begin, x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added at the beginning of axisi
and xi_end, the number of pixels added at the end of axisi
.value - FLOAT (default is
'0.0'
):One float, indicates the value to be filled.
Inputs¶
data (heterogeneous) - T:
Input tensor.
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input and output types to float tensors.
Pad - 1¶
Version¶
name: Pad (GitHub)
domain:
main
since_version:
1
function:
False
support_level:
SupportType.COMMON
shape inference:
False
This version of the operator has been available since version 1.
Summary¶
Given data
tensor, paddings, mode, and value.
Example:
Insert 0 paddings to the beginning of the second dimension.
data = [
[1.0, 1.2],
[2.3, 3.4],
[4.5, 5.7],
]
paddings = [0, 0, 2, 0]
output = [
[
[0.0, 0.0, 1.0, 1.2],
[0.0, 0.0, 2.3, 3.4],
[0.0, 0.0, 4.5, 5.7],
],
]
Attributes¶
mode - STRING (default is
'constant'
):Three modes: constant(default), reflect, edge
paddings - INTS (required) :
List of integers indicate the padding element count at the beginning and end of each axis, for 2D it is the number of pixel.
paddings
rank should be double of the input’s rank.paddings
format should be as follow [x1_begin, x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added at the beginning of axisi
and xi_end, the number of pixels added at the end of axisi
.value - FLOAT (default is
'0.0'
):One float, indicates the value to be filled, default is 0
Inputs¶
data (heterogeneous) - T:
Input tensor.
Outputs¶
output (heterogeneous) - T:
Tensor after padding.
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input and output types to float tensors.