Range¶
Range - 11¶
Version¶
- name: Range (GitHub) 
- domain: - main
- since_version: - 11
- function: - True
- support_level: - SupportType.COMMON
- shape inference: - True
This version of the operator has been available since version 11.
Summary¶
Generate a tensor containing a sequence of numbers that begin at start and extends by increments of delta
up to limit (exclusive).
The number of elements in the output of range is computed as below:
number_of_elements = max( ceil( (limit - start) / delta ) , 0 )
The pseudocode determining the contents of the output is shown below:
for(int i=0; i<number_of_elements; ++i) {
  output[i] =  start + (i * delta);
}
Example 1
Inputs: start = 3, limit = 9, delta = 3
Output: [3, 6]
Example 2
Inputs: start = 10, limit = 4, delta = -2
Output: [10, 8, 6]
Function Body¶
The function definition for this operator.
<
  domain: "",
  opset_import: ["" : 11]
>
Range (start, limit, delta) => (output)
{
   sub_result = Sub (limit, start)
   sub_result_casted = Cast <to: int = 1> (sub_result)
   delta_casted = Cast <to: int = 1> (delta)
   div_result = Div (sub_result_casted, delta_casted)
   ceil_result = Ceil (div_result)
   ceil_result_relu = Relu (ceil_result)
   ceil_result_relu_int = Cast <to: int = 7> (ceil_result_relu)
   ceil_result_relu_bool = Cast <to: int = 9> (ceil_result_relu)
   variadic_output, output = Loop (ceil_result_relu_int, ceil_result_relu_bool, start) <body: graph = loop_body_attribute (int64 i, bool cond,  prev) => ( cond_out,  current,  range) {
      cond_out = Identity (cond)
      current = Add (prev, delta)
      range = Identity (prev)
   }>
}
Inputs¶
- start (heterogeneous) - T: - Scalar. First entry for the range of output values. 
- limit (heterogeneous) - T: - Scalar. Exclusive upper limit for the range of output values. 
- delta (heterogeneous) - T: - Scalar. Value to step by. 
Outputs¶
- output (heterogeneous) - T: - A 1-D tensor with same type as the inputs containing generated range of values. 
Type Constraints¶
- T in ( - tensor(double),- tensor(float),- tensor(int16),- tensor(int32),- tensor(int64)):- Constrain input types to common numeric type tensors.