HardSigmoid¶
HardSigmoid - 22¶
Version¶
name: HardSigmoid (GitHub)
domain:
main
since_version:
22
function:
True
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 22.
Summary¶
HardSigmoid takes one input data (Tensor
Function Body¶
The function definition for this operator.
<
domain: "",
opset_import: ["" : 18]
>
HardSigmoid <beta,alpha>(X) => (Y)
{
Alpha = Constant <value_float: float = @alpha> ()
AlphaCast = CastLike (Alpha, X)
Beta = Constant <value_float: float = @beta> ()
BetaCast = CastLike (Beta, X)
Zero = Constant <value: tensor = float {0}> ()
ZeroCast = CastLike (Zero, X)
One = Constant <value: tensor = float {1}> ()
OneCast = CastLike (One, X)
AlphaMulX = Mul (X, AlphaCast)
AlphaMulXAddBeta = Add (AlphaMulX, BetaCast)
MinOneOrAlphaMulXAddBeta = Min (AlphaMulXAddBeta, OneCast)
Y = Max (MinOneOrAlphaMulXAddBeta, ZeroCast)
}
Attributes¶
alpha - FLOAT (default is
'0.2'
):Value of alpha.
beta - FLOAT (default is
'0.5'
):Value of beta.
Inputs¶
X (heterogeneous) - T:
Input tensor
Outputs¶
Y (heterogeneous) - T:
Output tensor
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input and output types to float tensors.
HardSigmoid - 6¶
Version¶
name: HardSigmoid (GitHub)
domain:
main
since_version:
6
function:
True
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 6.
Summary¶
HardSigmoid takes one input data (Tensor
Function Body¶
The function definition for this operator.
<
domain: "",
opset_import: ["" : 18]
>
HardSigmoid <beta,alpha>(X) => (Y)
{
Alpha = Constant <value_float: float = @alpha> ()
AlphaCast = CastLike (Alpha, X)
Beta = Constant <value_float: float = @beta> ()
BetaCast = CastLike (Beta, X)
Zero = Constant <value: tensor = float {0}> ()
ZeroCast = CastLike (Zero, X)
One = Constant <value: tensor = float {1}> ()
OneCast = CastLike (One, X)
AlphaMulX = Mul (X, AlphaCast)
AlphaMulXAddBeta = Add (AlphaMulX, BetaCast)
MinOneOrAlphaMulXAddBeta = Min (AlphaMulXAddBeta, OneCast)
Y = Max (MinOneOrAlphaMulXAddBeta, ZeroCast)
}
Attributes¶
alpha - FLOAT (default is
'0.2'
):Value of alpha.
beta - FLOAT (default is
'0.5'
):Value of beta.
Inputs¶
X (heterogeneous) - T:
Input tensor
Outputs¶
Y (heterogeneous) - T:
Output tensor
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input and output types to float tensors.
HardSigmoid - 1¶
Version¶
name: HardSigmoid (GitHub)
domain:
main
since_version:
1
function:
False
support_level:
SupportType.COMMON
shape inference:
False
This version of the operator has been available since version 1.
Summary¶
HardSigmoid takes one input data (Tensor
Attributes¶
alpha - FLOAT (default is
'0.2'
):Value of alpha default to 0.2
beta - FLOAT (default is
'0.5'
):Value of beta default to 0.5
consumed_inputs - INTS :
legacy optimization attribute.
Inputs¶
X (heterogeneous) - T:
Input tensor
Outputs¶
Y (heterogeneous) - T:
Output tensor
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input and output types to float tensors.