Mish¶
Mish - 22¶
Version¶
name: Mish (GitHub)
domain:
main
since_version:
22
function:
True
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 22.
Summary¶
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
Perform the linear unit element-wise on the input tensor X using formula:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))
Function Body¶
The function definition for this operator.
<
domain: "",
opset_import: ["" : 22]
>
Mish (X) => (Y)
{
Softplus_X = Softplus (X)
TanHSoftplusX = Tanh (Softplus_X)
Y = Mul (X, TanHSoftplusX)
}
Inputs¶
X (heterogeneous) - T:
Input tensor
Outputs¶
Y (heterogeneous) - T:
Output tensor
Type Constraints¶
T in (
tensor(bfloat16)
,tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input X and output types to float tensors.
Mish - 18¶
Version¶
name: Mish (GitHub)
domain:
main
since_version:
18
function:
True
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 18.
Summary¶
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
Perform the linear unit element-wise on the input tensor X using formula:
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))
Function Body¶
The function definition for this operator.
<
domain: "",
opset_import: ["" : 18]
>
Mish (X) => (Y)
{
Softplus_X = Softplus (X)
TanHSoftplusX = Tanh (Softplus_X)
Y = Mul (X, TanHSoftplusX)
}
Inputs¶
X (heterogeneous) - T:
Input tensor
Outputs¶
Y (heterogeneous) - T:
Output tensor
Type Constraints¶
T in (
tensor(double)
,tensor(float)
,tensor(float16)
):Constrain input X and output types to float tensors.