Selu

Selu - 22

Version

  • name: Selu (GitHub)

  • domain: main

  • since_version: 22

  • function: True

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 22.

Summary

Selu takes one input data (Tensor) and produces one output data (Tensor) where the scaled exponential linear unit function, y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0, is applied to the tensor elementwise.

Function Body

The function definition for this operator.

<
  domain: "",
  opset_import: ["" : 18]
>
Selu <alpha,gamma>(X) => (Y)
{
   Alpha = Constant <value_float: float = @alpha> ()
   AlphaCast = CastLike (Alpha, X)
   Gamma = Constant <value_float: float = @gamma> ()
   GammaCast = CastLike (Gamma, X)
   Zero = Constant <value: tensor = float {0}> ()
   ZeroCast = CastLike (Zero, X)
   ExpX = Exp (X)
   AlphaMulExpX = Mul (AlphaCast, ExpX)
   AlphaMulExpXSubAlpha = Sub (AlphaMulExpX, AlphaCast)
   Neg = Mul (GammaCast, AlphaMulExpXSubAlpha)
   Pos = Mul (GammaCast, X)
   XLessThanZero = Less (X, ZeroCast)
   Y = Where (XLessThanZero, Neg, Pos)
}

Attributes

  • alpha - FLOAT (default is '1.67326'):

    Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).

  • gamma - FLOAT (default is '1.0507'):

    Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of 1.0507009873554804934193349852946).

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.

Selu - 6

Version

  • name: Selu (GitHub)

  • domain: main

  • since_version: 6

  • function: True

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

Selu takes one input data (Tensor) and produces one output data (Tensor) where the scaled exponential linear unit function, y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0, is applied to the tensor elementwise.

Function Body

The function definition for this operator.

<
  domain: "",
  opset_import: ["" : 18]
>
Selu <alpha,gamma>(X) => (Y)
{
   Alpha = Constant <value_float: float = @alpha> ()
   AlphaCast = CastLike (Alpha, X)
   Gamma = Constant <value_float: float = @gamma> ()
   GammaCast = CastLike (Gamma, X)
   Zero = Constant <value: tensor = float {0}> ()
   ZeroCast = CastLike (Zero, X)
   ExpX = Exp (X)
   AlphaMulExpX = Mul (AlphaCast, ExpX)
   AlphaMulExpXSubAlpha = Sub (AlphaMulExpX, AlphaCast)
   Neg = Mul (GammaCast, AlphaMulExpXSubAlpha)
   Pos = Mul (GammaCast, X)
   XLessThanZero = Less (X, ZeroCast)
   Y = Where (XLessThanZero, Neg, Pos)
}

Attributes

  • alpha - FLOAT (default is '1.67326'):

    Coefficient of SELU default to 1.67326319217681884765625 (i.e., float32 approximation of 1.6732632423543772848170429916717).

  • gamma - FLOAT (default is '1.0507'):

    Coefficient of SELU default to 1.05070102214813232421875 (i.e., float32 approximation of 1.0507009873554804934193349852946).

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.

Selu - 1

Version

  • name: Selu (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

Selu takes one input data (Tensor) and produces one output data (Tensor) where the scaled exponential linear unit function, y = gamma * (alpha * e^x - alpha) for x <= 0, y = gamma * x for x > 0, is applied to the tensor elementwise.

Attributes

  • alpha - FLOAT (default is '1.6732'):

    Coefficient of SELU default to 1.6732.

  • consumed_inputs - INTS :

    legacy optimization attribute.

  • gamma - FLOAT (default is '1.0507'):

    Coefficient of SELU default to 1.0507.

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.