Sigmoid

Sigmoid - 13

Version

  • name: Sigmoid (GitHub)

  • domain: main

  • since_version: 13

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 13.

Summary

Sigmoid takes one input data (Tensor) and produces one output data (Tensor) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the tensor elementwise.

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.

Sigmoid - 6

Version

  • name: Sigmoid (GitHub)

  • domain: main

  • since_version: 6

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: True

This version of the operator has been available since version 6.

Summary

Sigmoid takes one input data (Tensor) and produces one output data (Tensor) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the tensor elementwise.

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.

Sigmoid - 1

Version

  • name: Sigmoid (GitHub)

  • domain: main

  • since_version: 1

  • function: False

  • support_level: SupportType.COMMON

  • shape inference: False

This version of the operator has been available since version 1.

Summary

Sigmoid takes one input data (Tensor) and produces one output data (Tensor) where the sigmoid function, y = 1 / (1 + exp(-x)), is applied to the tensor elementwise.

Attributes

  • consumed_inputs - INTS :

    legacy optimization attribute.

Inputs

  • X (heterogeneous) - T:

    Input tensor

Outputs

  • Y (heterogeneous) - T:

    Output tensor

Type Constraints

  • T in ( tensor(double), tensor(float), tensor(float16) ):

    Constrain input and output types to float tensors.