Serialization¶
Save a model and any Proto class¶
This ONNX graph needs to be serialized into one contiguous
memory buffer. Method SerializeToString is available
in every ONNX objects.
with open("model.onnx", "wb") as f:
f.write(onnx_model.SerializeToString())
This method has the following signature.
- class onnx.ModelProto¶
- SerializeToString()¶
Serializes the message to a string, only for initialized messages.
Every Proto class implements method SerializeToString.
Therefore the following code works with any class described
in page Protos.
with open("proto.pb", "wb") as f:
f.write(proto.SerializeToString())
Next example shows how to save a NodeProto.
from onnx import NodeProto
node = NodeProto()
node.name = "example-type-proto"
node.op_type = "Add"
node.input.extend(["X", "Y"])
node.output.extend(["Z"])
with open("node.pb", "wb") as f:
f.write(node.SerializeToString())
Load a model¶
Following function only automates the loading of a class ModelProto. Next sections shows how to restore any other proto class.
- onnx.load(f: IO[bytes] | str | PathLike, format: Literal['protobuf', 'textproto', 'onnxtxt', 'json'] | str | None = None, load_external_data: bool = True) ModelProto¶
Loads a serialized ModelProto into memory.
- Parameters:
f – can be a file-like object (has “read” function) or a string/PathLike containing a file name
format – The serialization format. When it is not specified, it is inferred from the file extension when
fis a path. If not specified _and_fis not a path, ‘protobuf’ is used. The encoding is assumed to be “utf-8” when the format is a text format.load_external_data – Whether to load the external data. Set to True if the data is under the same directory of the model. If not, users need to call
load_external_data_for_model()with directory to load external data from.
- Returns:
Loaded in-memory ModelProto.
from onnx import load
onnx_model = load("model.onnx")
Or:
from onnx import load
with open("model.onnx", "rb") as f:
onnx_model = load(f)
Next function does the same from a bytes array.
- onnx.load_model_from_string(s: bytes | str, format: Literal['protobuf', 'textproto', 'onnxtxt', 'json'] | str = 'protobuf') ModelProto[source]¶
Loads a binary string (bytes) that contains serialized ModelProto.
- Parameters:
s – a string, which contains serialized ModelProto
format – The serialization format. When it is not specified, it is inferred from the file extension when
fis a path. If not specified _and_fis not a path, ‘protobuf’ is used. The encoding is assumed to be “utf-8” when the format is a text format.
- Returns:
Loaded in-memory ModelProto.
Load a Proto¶
Proto means here any type containing data including a model, a tensor,
a sparse tensor, any class listed in page Protos.
The user must know the type of the data he needs to restore
and then call method ParseFromString.
protobuf
does not store any information about the class
of the saved data. Therefore, this class must be known before
restoring an object.
Next example shows how to restore a NodeProto.
from onnx import NodeProto
tp2 = NodeProto()
with open("node.pb", "rb") as f:
content = f.read()
tp2.ParseFromString(content)
print(tp2)
input: "X"
input: "Y"
output: "Z"
name: "example-type-proto"
op_type: "Add"
A shortcut exists for TensorProto:
- onnx.load_tensor_from_string(s: bytes, format: Literal['protobuf', 'textproto', 'onnxtxt', 'json'] | str = 'protobuf') TensorProto[source]¶
Loads a binary string (bytes) that contains serialized TensorProto.
- Parameters:
s – a string, which contains serialized TensorProto
format – The serialization format. When it is not specified, it is inferred from the file extension when
fis a path. If not specified _and_fis not a path, ‘protobuf’ is used. The encoding is assumed to be “utf-8” when the format is a text format.
- Returns:
Loaded in-memory TensorProto.