ONNX Types¶
Optional Type¶
An optional type represents a reference to either an element (could be Tensor, Sequence, Map, or Sparse Tensor) or a null value. The optional type appears in model inputs, outputs, as well as intermediate values.
Use-cases¶
Optional type enables users to represent more dynamic typing senarios in ONNX. Similar to Optional[X] type hint in Python typing which is equivalent to Union[None, X], Optional types in ONNX may reference a single element, or null.
Examples in PyTorch¶
Optional type only appears in TorchScript graphs generated by jit script compiler. Scripting a model captures dynamic types where an optional value can be assigned either None or a value.
Example 1
class Model(torch.nn.Module): def forward(self, x, y:Optional[Tensor]=None): if y is not None: return x + y return x
Corresponding TorchScript graph:
Graph( %self : __torch__.Model, %x.1 : Tensor, %y.1 : Tensor? ): %11 : int = prim::Constant[value=1]() %4 : None = prim::Constant() %5 : bool = aten::__isnot__(%y.1, %4) %6 : Tensor = prim::If(%5) block0(): %y.4 : Tensor = prim::unchecked_cast(%y.1) %12 : Tensor = aten::add(%x.1, %y.4, %11) -> (%12) block1(): -> (%x.1) return (%6)
ONNX graph:
Graph( %x.1 : Float(2, 3), %y.1 : Float(2, 3) ): %2 : Bool(1) = onnx::OptionalHasElement(%y.1) %5 : Float(2, 3) = onnx::If(%2) block0(): %3 : Float(2, 3) = onnx::OptionalGetElement(%y.1) %4 : Float(2, 3) = onnx::Add(%x.1, %3) -> (%4) block1(): %x.2 : Float(2, 3) = onnx::Identity(%x.1) -> (%x.2) return (%5)
Example 2
class Model(torch.nn.Module): def forward( self, src_tokens, return_all_hiddens=torch.tensor([False]), ): encoder_states: Optional[Tensor] = None if return_all_hiddens: encoder_states = src_tokens return src_tokens, encoder_states
Corresponding TorchScript graph:
Graph( %src_tokens.1 : Float(3, 2, 4,), %return_all_hiddens.1 : Bool(1) ): %3 : None = prim::Constant() %encoder_states : Tensor? = prim::If(%return_all_hiddens.1) block0(): -> (%src_tokens.1) block1(): -> (%3) return (%src_tokens.1, %encoder_states)
ONNX graph:
Graph( %src_tokens.1 : Float(3, 2, 4), %return_all_hiddens.1 : Bool(1) ): %2 : Float(3, 2, 4) = onnx::Optional[type=tensor(float)]() %3 : Float(3, 2, 4) = onnx::If(%return_all_hiddens.1) block0(): -> (%src_tokens.1) block1(): -> (%2) return (%3)