ai.onnx.ml - LinearClassifier¶
LinearClassifier - 1 (ai.onnx.ml)¶
Version¶
domain:
ai.onnx.ml
since_version:
1
function:
False
support_level:
SupportType.COMMON
shape inference:
True
This version of the operator has been available since version 1 of domain ai.onnx.ml.
Summary¶
Linear classifier
Attributes¶
classlabels_ints - INTS :
Class labels when using integer labels. One and only one ‘classlabels’ attribute must be defined.
classlabels_strings - STRINGS :
Class labels when using string labels. One and only one ‘classlabels’ attribute must be defined.
coefficients - FLOATS (required) :
A collection of weights of the model(s).
intercepts - FLOATS :
A collection of intercepts.
multi_class - INT (default is
'0'
):Indicates whether to do OvR or multinomial (0=OvR is the default).
post_transform - STRING (default is
'NONE'
):Indicates the transform to apply to the scores vector.
One of ‘NONE,’ ‘SOFTMAX,’ ‘LOGISTIC,’ ‘SOFTMAX_ZERO,’ or ‘PROBIT’
Inputs¶
X (heterogeneous) - T1:
Data to be classified.
Outputs¶
Y (heterogeneous) - T2:
Classification outputs (one class per example).
Z (heterogeneous) - tensor(float):
Classification scores ([N,E] - one score for each class and example
Type Constraints¶
T1 in (
tensor(double)
,tensor(float)
,tensor(int32)
,tensor(int64)
):The input must be a tensor of a numeric type, and of shape [N,C] or [C]. In the latter case, it will be treated as [1,C]
T2 in (
tensor(int64)
,tensor(string)
):The output will be a tensor of strings or integers.