ai.onnx.ml - Binarizer¶
Binarizer - 1 (ai.onnx.ml)¶
Version¶
- name: Binarizer (GitHub) 
- domain: - ai.onnx.ml
- since_version: - 1
- function: - False
- support_level: - SupportType.COMMON
- shape inference: - True
This version of the operator has been available since version 1 of domain ai.onnx.ml.
Summary¶
Maps the values of the input tensor to either 0 or 1, element-wise, based on the outcome of a comparison against a threshold value.
Attributes¶
- threshold - FLOAT (default is - '0.0'):- Values greater than this are mapped to 1, others to 0. 
Inputs¶
- X (heterogeneous) - T: - Data to be binarized 
Outputs¶
- Y (heterogeneous) - T: - Binarized output data 
Type Constraints¶
- T in ( - tensor(double),- tensor(float),- tensor(int32),- tensor(int64)):- The input must be a tensor of a numeric type. The output will be of the same tensor type. 
Examples¶
default¶
import numpy as np
import onnx
threshold = 1.0
node = onnx.helper.make_node(
    "Binarizer",
    inputs=["X"],
    outputs=["Y"],
    threshold=threshold,
    domain="ai.onnx.ml",
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = compute_binarizer(x, threshold)[0]
expect(node, inputs=[x], outputs=[y], name="test_ai_onnx_ml_binarizer")