Tile - 6 vs 13

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

Files changed (1) hide show
  1. Tile6 → Tile13 +1 -1
Tile6 → Tile13 RENAMED
@@ -1 +1 @@
1
1
  Constructs a tensor by tiling a given tensor.
2
2
  This is the same as function tile in Numpy, but no broadcast.
3
3
  For example A = [[1, 2], [3, 4]], B = [1, 2], tile(A, B) = [[1, 2, 1, 2], [3, 4, 3, 4]]
4
4
  ### Inputs
5
5
  - **input** (heterogeneous) - **T**:
6
6
  Input tensor of any shape.
7
7
  - **repeats** (heterogeneous) - **T1**:
8
8
  1D int64 tensor of the same length as input's dimension number, includes numbers of repeated copies along input's dimensions.
9
9
  ### Outputs
10
10
  - **output** (heterogeneous) - **T**:
11
11
  Output tensor of the same dimensions and type as tensor input. output_dim[i] = input_dim[i] * repeats[i]
12
12
  ### Type Constraints
13
- * **T** in ( tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ):
13
+ * **T** in ( tensor(bfloat16), tensor(bool), tensor(complex128), tensor(complex64), tensor(double), tensor(float), tensor(float16), tensor(int16), tensor(int32), tensor(int64), tensor(int8), tensor(string), tensor(uint16), tensor(uint32), tensor(uint64), tensor(uint8) ):
14
14
  Constrain input and output types to all tensor types.
15
15
  * **T1** in ( tensor(int64) ):
16
16
  Constrain repeat's type to int64 tensors.