ThresholdedRelu - 10 vs 22

Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.

ThresholdedRelu10 → ThresholdedRelu22 RENAMED
@@ -1 +1 @@
1
1
  ThresholdedRelu takes one input data (Tensor<T>) and produces one output data
2
2
  (Tensor<T>) where the rectified linear function, y = x for x > alpha, y = 0 otherwise,
3
3
  is applied to the tensor elementwise.
4
4
  #### Function Body
5
5
  The function definition for this operator.
6
6
  <
7
7
  domain: "",
8
8
  opset_import: ["" : 18]
9
9
  >
10
10
  ThresholdedRelu <alpha>(X) => (Y)
11
11
  {
12
12
  Alpha = Constant <value_float: float = @alpha> ()
13
13
  AlphaCast = CastLike (Alpha, X)
14
14
  Zero = Constant <value: tensor = float {0}> ()
15
15
  ZeroCast = CastLike (Zero, X)
16
16
  AlphaLessThanX = Less (AlphaCast, X)
17
17
  Y = Where (AlphaLessThanX, X, ZeroCast)
18
18
  }
19
19
  ### Attributes
20
20
  * **alpha - FLOAT** (default is '1.0'):
21
21
  Threshold value
22
22
  ### Inputs
23
23
  - **X** (heterogeneous) - **T**:
24
24
  Input tensor
25
25
  ### Outputs
26
26
  - **Y** (heterogeneous) - **T**:
27
27
  Output tensor
28
28
  ### Type Constraints
29
- * **T** in ( tensor(double), tensor(float), tensor(float16) ):
29
+ * **T** in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ):
30
30
  Constrain input and output types to float tensors.