Mish - 18 vs 22¶
Next section compares an older to a newer version of the same operator after both definition are converted into markdown text. Green means an addition to the newer version, red means a deletion. Anything else is unchanged.
- Mish18 → Mish22 +2 -2
Mish18 → Mish22
RENAMED
@@ -1 +1 @@
|
|
1
1
|
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
2
2
|
Perform the linear unit element-wise on the input tensor X using formula:
|
3
3
|
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + e^{x}))
|
4
4
|
#### Function Body
|
5
5
|
The function definition for this operator.
|
6
6
|
<
|
7
7
|
domain: "",
|
8
|
-
opset_import: ["" :
|
8
|
+
opset_import: ["" : 22]
|
9
9
|
>
|
10
10
|
Mish (X) => (Y)
|
11
11
|
{
|
12
12
|
Softplus_X = Softplus (X)
|
13
13
|
TanHSoftplusX = Tanh (Softplus_X)
|
14
14
|
Y = Mul (X, TanHSoftplusX)
|
15
15
|
}
|
16
16
|
### Inputs
|
17
17
|
- **X** (heterogeneous) - **T**:
|
18
18
|
Input tensor
|
19
19
|
### Outputs
|
20
20
|
- **Y** (heterogeneous) - **T**:
|
21
21
|
Output tensor
|
22
22
|
### Type Constraints
|
23
|
-
* **T** in ( tensor(double), tensor(float), tensor(float16) ):
|
23
|
+
* **T** in ( tensor(bfloat16), tensor(double), tensor(float), tensor(float16) ):
|
24
24
|
Constrain input X and output types to float tensors.
|