# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
from __future__ import annotations
from io import BytesIO
from typing import Any
import numpy as np
from onnx import load
from onnx.defs import onnx_opset_version
from onnx.external_data_helper import ExternalDataInfo, uses_external_data
from onnx.model_container import ModelContainer
from onnx.onnx_pb import (
FunctionProto,
GraphProto,
ModelProto,
NodeProto,
TensorProto,
TypeProto,
)
from onnx.reference.op_run import (
OpFunctionContextDependant,
OpRun,
OpRunExpand,
RuntimeContextError,
to_array_extended,
)
from onnx.reference.ops_optimized import optimized_operators
[docs]
class ReferenceEvaluator:
r"""Computes the outputs of an ONNX proto (`ModelProto`, `FunctionProto`, `GraphProto`, `NodeProto`).
This is a pure python implementation of ONNX specifications.
Mismatches may remain between the official specifications and the implementation here.
In the case of such a mismatch, the official spec overrides this implementation.
Args:
proto: :class:`onnx.ModelProto`, :class:`onnx.GraphProto`,
:class:`onnx.FunctionProto`, :class:`onnx.NodeProto`,
filename or bytes
verbose: display intermediate results on the standard output
during the execution
opsets: if *proto* is an instance of *GraphProto*, opsets must
be defined by a dictionary of
functions: known onnx functions
new_ops: this runtime can be used to test the implementations of
new operators, *new_ops* is a list of classes derived from
:class:`OpRun <onnx.reference.op_run.OpRun>`, every class
must define the static attribute `domain`, there may be
multiple implementations for the same operator, the first
one in the list is used.
optimized: some operators have two implementations, a naive one
corresponding to definition of the mathematical definition
of the operator, another one more efficient. This is the
case for operator Conv. The naive version is ten times
slower than the optimized one using a decomposition into
*Conv = im2col + Gemm*. If True, all optimized kernels are
added in `new_ops` and are used instead of the inner
implementation if list *new_ops* does not already contain
one.
The class maps every node to its associated implementation.
When a subgraph of a function is met,
it uses this class to execute the subgraph or the function.
Next example shows how to run `ReferenceEvaluator` with an onnx model
stored in file `model.onnx`.
::
import numpy as np
from onnx.reference import ReferenceEvaluator
X = np.array(...)
sess = ReferenceEvaluator("model.onnx")
results = sess.run(None, {"X": X})
print(results[0]) # display the first result
Parameter *verbose* may be used to show intermediate results.
::
import numpy as np
from onnx.reference import ReferenceEvaluator
X = np.array(...)
sess = ReferenceEvaluator("model.onnx", verbose=1)
results = sess.run(None, {"X": X})
print(results[0]) # display the first result
The class can use any implementation available in folder
`ops <https://github.com/onnx/onnx/tree/main/onnx/reference/ops>`_.
Adding an implementation requires two changes. The first one is
the implementation itself. Any existing node can be used as a template.
The second is one line in file `_op_list.py
<https://github.com/onnx/onnx/tree/main/onnx/reference/ops/_op_list.py>`_
to import the file and let the reference evaluator know it exists.
This class can also be used to test an implementation of
a custom operator. Let's assume this new operator
is `InvAlpha` from domain `custom`. The implementation
must take place in a class inheriting from
:class:`OpRun <onnx.reference.op_run.OpRun>`.
It must also define attribute `op_domain`.
Here is an example which computes :math:`\\frac{1}{X + \\alpha}`.
.. exec_code::
from onnx.reference.op_run import OpRun
class InvAlpha(OpRun):
op_domain = "custom"
def _run(self, x, alpha=None): # type: ignore
# None must be the default value, it is automatically
# replaced by class OpRun with either the default value
# specified in the NodeProto or an attribute value defined
# in a `FunctionProto`.
return (1 / (x + alpha),)
`alpha` is an attribute. It can be defined by the onnx node or
be defined by the function using this node. It is safe to assume
that attributes are known at the same time as the input.
Class `ReferenceEvaluator` must know about this new implementation
and this can be done by specified argument *new_ops*.
::
sess = ReferenceEvaluator(onnx_model, new_ops=[InvAlpha])
got = sess.run(None, {"X": x})[0]
A specific node can be simply evaluated.
.. exec_code::
import numpy as np
from onnx.reference.ops._op_list import Celu
x = np.array([[0, 1], [-1, 2]], dtype=np.float32)
y = Celu.eval(x, alpha=0.5)
print(y)
This can also be expressed as:
.. exec_code::
import numpy as np
from onnx.reference.ops import load_op
Celu = load_op("", "Celu") # domain is ""
x = np.array([[0, 1], [-1, 2]], dtype=np.float32)
y = Celu.eval(x, alpha=0.5)
print(y)
It is possible to overwrite an existing operator.
The class name must be the same. The domain does not have
to be specified for the default domain. However, by default,
class `OpRun` will load the most recent for this operator.
It can be explicitly specified by adding static attribute
`op_schema` of type :class:`OpSchema
<onnx.onnx_cpp2py_export.defs.OpSchema>`.
::
from onnx.reference.op_run.op_conv import Conv as _Conv
class Conv(_Conv):
op_schema = instance_of_OpSchema()
def _run(self, ...):
...
An operator may be different in a later opset. In that case,
a new implementation needs to be registered. `Pad_11`, `Pad_18`.
`Pad_11` is the implementation chose for opset in [11, 17].
`Pad_18` is selected for any greater opset. Both classes must be
imported into file `_op_list.py` to register their existence to the
runtime.
An operator may have a reference implementation such as `CastLike`
and still be defined as a function. By default, the reference implementation
is used. This behavior can be changed by adding a class to the list
of overwritten operators. It must inherit from :class:`OpRunExpand`.
::
from onnx.reference.op_run import OpRunExpand
class CastLike(OpRunExpand):
op_domain = ""
ref = ReferenceEvaluator(model, new_ops=[CastLike])
# ...
This mechanism is used in unit test to check the function
implementation a schema may define.
"""
def __init__( # type: ignore
self,
proto: Any,
opsets: dict[str, int] | None = None,
functions: list[ReferenceEvaluator | FunctionProto] | None = None, # type: ignore
verbose: int = 0,
new_ops: list[OpRun] | None = None,
optimized: bool = True,
):
if optimized:
if new_ops is None:
new_ops = optimized_operators.copy()
else:
set_new_ops = set(new_ops)
for op in optimized_operators:
if op not in set_new_ops:
new_ops.append(op)
self.output_types_ = None
self.input_types_ = None
if isinstance(proto, ModelContainer):
self.container_ = proto
proto = self.container_.model_proto
else:
self.container_ = None
if isinstance(proto, str):
with open(proto, "rb") as f:
proto = load(f)
elif isinstance(proto, bytes):
proto = load(BytesIO(proto))
self.proto_ = proto
self.functions_: dict[tuple[str, str], ReferenceEvaluator] = {}
self.attributes_: list[str] = []
if isinstance(proto, ModelProto):
self.onnx_graph_ = proto.graph
self.opsets_ = {d.domain: d.version for d in proto.opset_import}
if opsets is not None:
raise ValueError("opsets must be None if proto is ModelProto.")
if functions is not None:
raise ValueError("functions must be None if proto is ModelProto.")
functions = proto.functions # type: ignore[assignment]
elif isinstance(proto, GraphProto):
self.onnx_graph_ = proto
if not isinstance(opsets, dict):
raise TypeError("opsets must be a dictionary if proto is GraphProto.")
self.opsets_ = opsets
elif isinstance(proto, FunctionProto):
self.onnx_graph_ = None # type: ignore
self.opsets_ = {d.domain: d.version for d in proto.opset_import}
if opsets is not None:
raise ValueError("opsets must be None if proto is FunctionProto.")
self.attributes_ = list(proto.attribute)
elif isinstance(proto, NodeProto):
self.onnx_graph_ = None # type: ignore
self.opsets_ = {
proto.domain: 1 if proto.domain != "" else onnx_opset_version()
}
else:
raise TypeError(f"Unexpected type {type(proto)} for proto.")
if self.onnx_graph_:
self.input_names_ = [i.name for i in self.onnx_graph_.input]
self.input_types_ = [i.type for i in self.onnx_graph_.input]
self.output_names_ = [o.name for o in self.onnx_graph_.output]
self.output_types_ = [i.type for i in self.onnx_graph_.output]
self.inits_ = list(self.onnx_graph_.initializer) + list(
self.onnx_graph_.sparse_initializer # type: ignore
)
self.nodes_ = self.onnx_graph_.node
all_types = {i.name: i.type for i in self.onnx_graph_.input}
if hasattr(self.proto_, "value_info"):
for shape_type in self.proto_.value_info:
all_types[shape_type.name] = shape_type.type
self.all_types_ = all_types
else:
self.input_names_ = list(proto.input)
self.output_names_ = list(proto.output)
self.inits_ = []
if isinstance(proto, NodeProto):
self.nodes_ = [proto] # type: ignore[assignment]
else:
self.nodes_ = proto.node
if functions is not None:
for f in functions: # type: ignore
if isinstance(f, FunctionProto):
self.functions_[f.domain, f.name] = self.__class__(
f, verbose=verbose, functions=list(self.functions_.values())
)
elif isinstance(f, ReferenceEvaluator):
onx = f.proto_ # type: ignore
self.functions_[onx.domain, onx.name] = f
else:
raise TypeError(f"Unexpected type {type(f)!r} for a function.")
self.verbose = verbose
self.new_ops_: dict[tuple[str, str], type[OpRun]] = {}
if new_ops is not None:
for cl in new_ops:
if not hasattr(cl, "op_domain"):
raise AttributeError(
f"Class {cl} must define attribute 'op_domain'."
)
if not issubclass(cl, OpRun): # type: ignore
raise TypeError(f"Class {cl} must inherit from OpRun (in new_ops).")
key = cl.op_domain, cl.__name__ # type: ignore
if key in self.new_ops_:
# Already an implementation, the first one is used.
continue
self.new_ops_[key] = cl
self._init()
def retrieve_external_data(self, initializer: TensorProto) -> np.array:
"""Returns a tensor saved as external."""
info = ExternalDataInfo(initializer)
location = info.location
if self.container_ and self.container_.is_in_memory_external_initializer(
location
):
# It comes from a large container.
return self.container_[location]
# Otherwise, the data is on disk.
if self.container_ is not None:
raise RuntimeError(
"ReferenceEvaluator assumes a LargeContainer was loaded with its external tensor."
)
raise RuntimeError(
"An instance of LargeContainer should be created before using ReferenceEvaluator."
)
def _log_arg(self, a: Any) -> Any:
if isinstance(a, (str, int, float)):
return a
if isinstance(a, np.ndarray):
if self.verbose < 4: # noqa: PLR2004
return f"{a.dtype}:{a.shape} in [{a.min()}, {a.max()}]"
elements = a.ravel().tolist()
if len(elements) > 5: # noqa: PLR2004
elements = elements[:5]
return f"{a.dtype}:{a.shape}:{','.join(map(str, elements))}..."
return f"{a.dtype}:{a.shape}:{elements}"
if hasattr(a, "append"):
return ", ".join(map(self._log_arg, a))
return a
def _log(self, level: int, pattern: str, *args: list[Any]) -> None:
if level < self.verbose:
new_args = [self._log_arg(a) for a in args]
print(pattern % tuple(new_args))
@property
def input_names(self): # type: ignore
"""Returns the input names."""
return self.input_names_
@property
def input_types(self): # type: ignore
"""Returns the input types if any specified."""
return self.input_types_
@property
def output_names(self): # type: ignore
"""Returns the output names."""
return self.output_names_
@property
def output_types(self): # type: ignore
"""Returns the output types."""
return self.output_types_
@property
def opsets(self): # type: ignore
"""Returns the opsets."""
return self.opsets_
@property
def has_linked_attribute(self):
"""Checks if the graph has a linked attribute (= an attribute whose value is defined
by a function attribute.
"""
return any(node.has_linked_attribute for node in self.rt_nodes_)
def __str__(self) -> str:
return f"{self.__class__.__name__}({', '.join(self.input_names)}) -> {', '.join(self.output_names)}"
def get_result_types(self, name: str, exc: bool = True) -> Any:
if self.all_types_ is None:
raise RuntimeError(
f"Unable to return type for name {name!r}. Run shape_inference first."
)
if name not in self.all_types_:
if exc:
raise RuntimeError(
f"Unable to return type for name {name!r}, it was not found in {sorted(self.all_types_)}."
)
return None
return self.all_types_[name]
def _init(self) -> None:
"""Loads the implementation for every node in the graph."""
self.rt_inits_ = {}
self.rt_nodes_ = []
for init in self.inits_:
self.rt_inits_[init.name] = (
self.retrieve_external_data(init)
if uses_external_data(init)
else to_array_extended(init)
)
run_params = {
"log": lambda pattern, *args: self._log(10, pattern, *args),
"opsets": self.opsets,
"verbose": self.verbose,
"new_ops": self.new_ops_,
"existing_functions": self.functions_.copy(),
"evaluator_cls": self.__class__,
}
if self.input_types_:
all_types = {i.name: i.type for i in self.onnx_graph_.input}
if hasattr(self.proto_, "value_info"):
for shape_type in self.proto_.value_info:
all_types[shape_type.name] = shape_type.type
self.all_types_ = all_types
else:
self.all_types_ = None # type: ignore
for node in self.nodes_:
try:
cl = self._load_impl(node)
except RuntimeContextError as e:
# A node has a context dependent implementation.
# Shape inference must be run to get the input types.
if self.all_types_:
it = [self.get_result_types(i, exc=False) for i in node.input]
if None in it:
# One input does not exist. It must be done while executing the graph.
cl = lambda *args, parent=self: OpFunctionContextDependant( # noqa: E731
*args, parent=parent
)
else:
cl = self._load_impl(node, it) # type: ignore
else:
raise RuntimeContextError(
f"No implementation was found for node type {node.op_type!r} from domain {node.domain!r}. "
f"If this node has a context dependent implementation, you should run function infer_shapes "
f"before calling ReferenceEvaluator."
) from e
try:
inst = cl(node, run_params)
except TypeError as e:
raise TypeError(
f"Unable to instantiate class {cl!r} with "
f"run_params={run_params} and node={node}."
) from e
self.rt_nodes_.append(inst)
def _load_impl( # noqa: PLR0911
self, node: NodeProto, input_types: TypeProto | None = None
) -> Any:
"""Loads the implementation for a specified runtime."""
if node.domain not in self.opsets:
raise RuntimeError(
f"Domain {node.domain!r} (node type: {node.op_type!r}) "
f"is not specified. Known opsets: {self.opsets!r}."
)
version = self.opsets[node.domain]
key = node.domain, node.op_type
expand = False
if key in self.new_ops_:
# This operator has a custom implementation.
# This mechanism can be used to implement a custom onnx node
# or to overwrite an existing one.
cl = self.new_ops_[key]
if not issubclass(cl, OpRunExpand):
return cl
# It must be replaced by its implementation defined in its schema.
expand = True
if node.domain == "":
from onnx.reference.ops import load_op
try:
return load_op(
node.domain,
node.op_type,
version,
expand=expand,
evaluator_cls=self.__class__,
)
except RuntimeContextError:
if input_types is None:
raise
return load_op(
node.domain,
node.op_type,
version,
node=node,
input_types=input_types,
expand=expand,
evaluator_cls=self.__class__,
)
if expand:
raise NotImplementedError(
f"Expanding an operator with its function definition "
f"is only implemented for the main opset. Remove operator "
f"{node.domain},{node.op_type} from the list of inlined operator."
)
if node.domain == "ai.onnx.preview.training":
from onnx.reference.ops.aionnx_preview_training import load_op as load_op_pt
return load_op_pt(node.domain, node.op_type, version)
if node.domain == "experimental":
from onnx.reference.ops.experimental import load_op as load_op_exp
return load_op_exp(node.domain, node.op_type, version)
if node.domain == "ai.onnx.ml":
from onnx.reference.ops.aionnxml import load_op as load_op_ml
return load_op_ml(node.domain, node.op_type, version)
# It has to be a function.
if key in self.functions_:
from onnx.reference.ops import load_op
impl = self.functions_[key]
return load_op(
node.domain,
node.op_type,
version,
custom=impl,
evaluator_cls=self.__class__,
)
raise NotImplementedError(
f"Node type {node.op_type!r} from domain {node.domain!r} "
f"is unknown, known functions: {sorted(self.functions_)}."
)
[docs]
def run(
self,
output_names,
feed_inputs: dict[str, Any],
attributes: dict[str, Any] | None = None,
intermediate: bool = False,
) -> dict[str, Any] | list[Any]: # type: ignore
"""Executes the onnx model.
Args:
output_names: requested outputs by names, None for all
feed_inputs: dictionary `{ input name: input value }`
attributes: attributes value if the instance runs a
FunctionProto
intermediate: if True, the function returns all the results,
final ones and intermediates one in a same dictionary,
if False, only the final results are returned in a list
Returns:
list of requested outputs if intermediate is False,
named results in a dictionary otherwise
"""
if output_names is None:
output_names = self.output_names
if isinstance(self.proto_, FunctionProto) and attributes is None:
raise TypeError()
# step 1: inputs and initializers
results = {"": None} # optional input
results.update(self.rt_inits_) # type: ignore[arg-type]
results.update(feed_inputs)
for k, v in self.rt_inits_.items():
self._log(2, " +C %s: %s", k, v) # type: ignore[arg-type]
for k, v in feed_inputs.items():
self._log(2, " +I %s: %s", k, v) # type: ignore[arg-type]
# step 2: execute nodes
for node in self.rt_nodes_:
self._log(1, "%s(%s) -> %s", node.op_type, node.input, node.output)
for i in node.input:
if i not in results:
raise RuntimeError(
f"Unable to find input {i!r} in known results {sorted(results)}, "
f"self.rt_inits_ has {sorted(self.rt_inits_)}, "
f"feed_inputs has {sorted(feed_inputs)}."
)
inputs = [results[i] for i in node.input]
linked_attributes = {}
if node.has_linked_attribute and attributes:
linked_attributes["linked_attributes"] = attributes
if node.need_context():
outputs = node.run(*inputs, context=results, **linked_attributes)
else:
outputs = node.run(*inputs, **linked_attributes)
for name, value in zip(node.output, outputs):
self._log(2, " + %s: %s", name, value) # type: ignore[arg-type]
results[name] = value
# return the results
if intermediate:
return results
for name in output_names:
if name not in results:
raise RuntimeError(
f"Unable to find output name {name!r} in {sorted(results)}, proto is\n{self.proto_}"
)
return [results[name] for name in output_names]