# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
"""onnx shape inference. Shape inference is not guaranteed to be
complete.
"""
from __future__ import annotations
import os
from collections.abc import Sequence
import onnx
import onnx.onnx_cpp2py_export.shape_inference as C # noqa: N812
from onnx import AttributeProto, FunctionProto, ModelProto, TypeProto
[docs]
def infer_shapes(
model: ModelProto | bytes,
check_type: bool = False,
strict_mode: bool = False,
data_prop: bool = False,
) -> ModelProto:
"""Apply shape inference to the provided ModelProto.
Inferred shapes are added to the value_info field of the graph.
If the inferred values conflict with values already provided in the
graph, that means that the provided values are invalid (or there is a
bug in shape inference), and the result is unspecified.
Arguments:
model: ModelProto.
check_type: Checks the type-equality for input and output.
strict_mode: Stricter shape inference, it will throw errors if any;
Otherwise, simply stop if any error.
data_prop: Enables data propagation for limited operators to perform shape computation.
Returns:
(ModelProto) model with inferred shape information
"""
if isinstance(model, (ModelProto, bytes)):
model_str = model if isinstance(model, bytes) else model.SerializeToString()
inferred_model_str = C.infer_shapes(
model_str, check_type, strict_mode, data_prop
)
return onnx.load_from_string(inferred_model_str)
if isinstance(model, str):
raise TypeError(
"infer_shapes only accepts ModelProto or bytes,"
"you can use infer_shapes_path for the model path (String)."
)
raise TypeError(
f"infer_shapes only accepts ModelProto or bytes, incorrect type: {type(model)}"
)
[docs]
def infer_shapes_path(
model_path: str | os.PathLike,
output_path: str | os.PathLike = "",
check_type: bool = False,
strict_mode: bool = False,
data_prop: bool = False,
) -> None:
"""Take model path for shape_inference.
This function is the same as :func:`infer_shape` but supports >2GB models.
The function outputs the inferred model to the `output_path`. The original model path
is used if not specified.
"""
if isinstance(model_path, ModelProto):
raise TypeError(
"infer_shapes_path only accepts model Path (String),"
"you can use infer_shapes for the ModelProto."
)
try:
model_path = os.fspath(model_path)
except TypeError as exp:
raise TypeError(
"infer_shapes_path only accepts model path as a string or PathLike, "
f"incorrect model path type: {type(model_path)}"
) from exp
try:
output_path = os.fspath(output_path)
except TypeError as exp:
raise TypeError(
"infer_shapes_path only accepts output path as a string or PathLike, "
f"incorrect output path type: {type(output_path)}"
) from exp
if output_path == "":
output_path = model_path
C.infer_shapes_path(model_path, output_path, check_type, strict_mode, data_prop)
[docs]
def infer_node_outputs(
schema: onnx.defs.OpSchema,
node: onnx.NodeProto,
input_types: dict[str, onnx.TypeProto],
input_data: dict[str, onnx.TensorProto] | None = None,
input_sparse_data: dict[str, onnx.SparseTensorProto] | None = None,
opset_imports: list[onnx.OperatorSetIdProto] | None = None,
ir_version: int = onnx.IR_VERSION,
) -> dict[str, onnx.TypeProto]:
if not schema.has_type_and_shape_inference_function:
return {}
if input_data is None:
input_data = {}
if input_sparse_data is None:
input_sparse_data = {}
if opset_imports is None:
passed_opset_imports = {}
else:
passed_opset_imports = {opset.domain: opset.version for opset in opset_imports}
# catch KeyError if node's input does not exist in input_types
passed_input_types = {
key: input_types[key].SerializeToString() for key in node.input if key != ""
}
# input_types will also be used as outer_scope_value_types so do not filter by node's input here
for key, value in input_types.items():
if key not in passed_input_types:
passed_input_types[key] = value.SerializeToString()
passed_input_data = {
key: input_data[key].SerializeToString()
for key in node.input
if key in input_data
}
passed_sparse_input_data = {
key: input_sparse_data[key].SerializeToString()
for key in node.input
if key in input_sparse_data
}
outputs = schema._infer_node_outputs(
node.SerializeToString(),
passed_input_types,
passed_input_data,
passed_sparse_input_data,
passed_opset_imports,
ir_version,
) # type: ignore[call-arg]
return {key: onnx.TypeProto.FromString(out) for key, out in outputs.items()}
[docs]
def infer_function_output_types(
function: FunctionProto,
input_types: Sequence[TypeProto],
attributes: Sequence[AttributeProto],
) -> list[TypeProto]:
"""Apply type-and-shape-inference to given function body, with given input types
and given input attribute values.
"""
result = C.infer_function_output_types(
function.SerializeToString(),
[x.SerializeToString() for x in input_types],
[x.SerializeToString() for x in attributes],
)
def to_type_proto(x) -> TypeProto:
type_proto = onnx.TypeProto()
type_proto.ParseFromString(x)
return type_proto
return [to_type_proto(x) for x in result]
InferenceError = C.InferenceError