Source code for onnx.checker

# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
"""Graph utilities for checking whether an ONNX proto message is legal."""

from __future__ import annotations

__all__ = [
    "check_attribute",
    "check_function",
    "check_graph",
    "check_model",
    "check_node",
    "check_sparse_tensor",
    "check_tensor",
    "check_value_info",
    "DEFAULT_CONTEXT",
    "LEXICAL_SCOPE_CONTEXT",
    "ValidationError",
    "C",
    "MAXIMUM_PROTOBUF",
]

import os
import sys
from typing import Any, Callable, TypeVar

from google.protobuf.message import Message

import onnx.defs
import onnx.onnx_cpp2py_export.checker as C  # noqa: N812
import onnx.shape_inference
from onnx import (
    IR_VERSION,
    AttributeProto,
    FunctionProto,
    GraphProto,
    ModelProto,
    NodeProto,
    SparseTensorProto,
    TensorProto,
    ValueInfoProto,
)

# Limitation of single protobuf file is 2GB
MAXIMUM_PROTOBUF = 2000000000

# TODO: This thing where we reserialize the protobuf back into the
# string, only to deserialize it at the call site, is really goofy.
# Stop doing that.


# NB: Please don't edit this context!
DEFAULT_CONTEXT = C.CheckerContext()
DEFAULT_CONTEXT.ir_version = IR_VERSION
# TODO: Maybe ONNX-ML should also be defaulted?
DEFAULT_CONTEXT.opset_imports = {"": onnx.defs.onnx_opset_version()}

LEXICAL_SCOPE_CONTEXT = C.LexicalScopeContext()


FuncType = TypeVar("FuncType", bound=Callable[..., Any])


def _ensure_proto_type(proto: Message, proto_type: type[Message]) -> None:
    if not isinstance(proto, proto_type):
        raise TypeError(
            f"The proto message needs to be of type '{proto_type.__name__}'"
        )


[docs] def check_value_info( value_info: ValueInfoProto, ctx: C.CheckerContext = DEFAULT_CONTEXT ) -> None: _ensure_proto_type(value_info, ValueInfoProto) return C.check_value_info(value_info.SerializeToString(), ctx)
[docs] def check_tensor(tensor: TensorProto, ctx: C.CheckerContext = DEFAULT_CONTEXT) -> None: _ensure_proto_type(tensor, TensorProto) return C.check_tensor(tensor.SerializeToString(), ctx)
[docs] def check_attribute( attr: AttributeProto, ctx: C.CheckerContext = DEFAULT_CONTEXT, lexical_scope_ctx: C.LexicalScopeContext = LEXICAL_SCOPE_CONTEXT, ) -> None: _ensure_proto_type(attr, AttributeProto) return C.check_attribute(attr.SerializeToString(), ctx, lexical_scope_ctx)
[docs] def check_node( node: NodeProto, ctx: C.CheckerContext = DEFAULT_CONTEXT, lexical_scope_ctx: C.LexicalScopeContext = LEXICAL_SCOPE_CONTEXT, ) -> None: _ensure_proto_type(node, NodeProto) return C.check_node(node.SerializeToString(), ctx, lexical_scope_ctx)
[docs] def check_function( function: FunctionProto, ctx: C.CheckerContext | None = None, lexical_scope_ctx: C.LexicalScopeContext = LEXICAL_SCOPE_CONTEXT, ) -> None: _ensure_proto_type(function, FunctionProto) if ctx is None: ctx = C.CheckerContext() ctx.ir_version = onnx.helper.find_min_ir_version_for( function.opset_import, ignore_unknown=True ) ctx.opset_imports = { domain_version.domain: domain_version.version for domain_version in function.opset_import } C.check_function(function.SerializeToString(), ctx, lexical_scope_ctx)
[docs] def check_graph( graph: GraphProto, ctx: C.CheckerContext = DEFAULT_CONTEXT, lexical_scope_ctx: C.LexicalScopeContext = LEXICAL_SCOPE_CONTEXT, ) -> None: _ensure_proto_type(graph, GraphProto) return C.check_graph(graph.SerializeToString(), ctx, lexical_scope_ctx)
[docs] def check_sparse_tensor( sparse: SparseTensorProto, ctx: C.CheckerContext = DEFAULT_CONTEXT ) -> None: _ensure_proto_type(sparse, SparseTensorProto) C.check_sparse_tensor(sparse.SerializeToString(), ctx)
[docs] def check_model( model: ModelProto | str | bytes | os.PathLike, full_check: bool = False, skip_opset_compatibility_check: bool = False, check_custom_domain: bool = False, ) -> None: """Check the consistency of a model. An exception will be raised if the model's ir_version is not set properly or is higher than checker's ir_version, or if the model has duplicate keys in metadata_props. If IR version >= 3, the model must specify opset_import. If IR version < 3, the model cannot have any opset_import specified. Args: model: Model to check. If model is a path, the function checks model path first. If the model bytes size is larger than 2GB, function should be called using model path. full_check: If True, the function also runs shape inference check. skip_opset_compatibility_check: If True, the function skips the check for opset compatibility. check_custom_domain: If True, the function will check all domains. Otherwise only check built-in domains. """ # If model is a path instead of ModelProto if isinstance(model, (str, os.PathLike)): C.check_model_path( os.fspath(model), full_check, skip_opset_compatibility_check, check_custom_domain, ) else: protobuf_string = ( model if isinstance(model, bytes) else model.SerializeToString() ) # If the protobuf is larger than 2GB, # remind users should use the model path to check if sys.getsizeof(protobuf_string) > MAXIMUM_PROTOBUF: raise ValueError( "This protobuf of onnx model is too large (>2GB). Call check_model with model path instead." ) C.check_model( protobuf_string, full_check, skip_opset_compatibility_check, check_custom_domain, )
ValidationError = C.ValidationError